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Abstract— This paper proposesthe use of a vector of color his-
togram peaksasan efficient and effective way for many image index-
ing problems. It shows that histogram peaks are more stable than
generalhistogram bins whenthere are variation of scaleand/or scale.
We also intr oduce the structure of a room recognition systemwhich
applies this indexing technique to omni-dir ectional imagesof rooms.
Experimental resultsshowsthat using only peaksleadsto significantly
lesstime and storage demandsan still provides > 92% recognition
rates acrossa databaseof hundredsof rooms.
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|. INTRODUCTION

This work investigatesolor histogramindexing, its sta-
bility andits applicationto the problemof room recogni-
tion. Recognitionof a “room” in a complex ervironment
with uncontrolledighting mightbeusedonamobilerobot,
in a wheelchair assistanbr on a wearablecomputercom-
puter In all of thesescenarioshe computationapowerand
availablestorageof the systemwill generallybe quitelim-
ited so a very efficient computation,and compactstorage
arecritical.

In generalreal-timeconstrainbf machinevision require
fastalgorithmsandsmallerdatastorage[1].Coloris avery
importantcuein extractinginformationfrom animage,and
color histogramcomparisorhasrecentlybecomea popu-
lar techniquefor imageandvideoindexing[1], [2], [3], [4],
[5]. Thepopularityof color asanindex residedn its ease
of computationrandeffectiveness[6].Using colorin areal-
time systemhasseveralrelative advantagescolorinforma-
tion is muchfasterto computethanmostother“invariants”
andit canbe nearlyinvariantto changesn orientationand
small partial occlusionsof the object. Swain and Ballard
suggestshatcoloris areasonablefficientmethodfor iden-
tifying objectsof known location, and locating objectsof
known appearancandpracticalto usecolor for high-speed
imagelocationandidentification.We notethateventhough
[1] claimsthata color histogramis largely independenof
resolution,our experimentalwork shows it is not indepen-
dentof resolutionchangeghatincludesblurring.

Unfortunately eventhoughthe color histogramhasbeen
shavn to be an importanttool in image indexing it has
beenusedmostlywith fixedimagedatabased-urthermore,
known distancemeasuregor the recognitionprocessthat
can handlelarge variationsin scaleand illumination are
computationaéxpensve becausehe histogramis typically
a high-dimensionaldistribution. Moreover, indexing on
sucha high-dimensionafeaturefor largeimagedatabases,
it is generallynot feasibleto computethe matchmeasure
againseveryimage[7]. Thuswe seeka muchlower dimen-
sionalfeaturesetwhile seekingto insureit maintainslow
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levels of false detectionand falserejection. We propose
the useof the locationof color histogrampeaks,a simple
to computedistancemeasuredetweenthe color images,
andshawv that theseare much more stablethan histogram
distancemeasuregor certainfairly generalcases(includ-

ing for largeillumination andresolutionvariations).As we

will shaw, similarity retrieval basedon the histogrampeaks
measureachiezes both the goalsof efficient and effective

recognitionsystem.

The next sectionsureys relatedwork. Section3 intro-
ducegheproposedilgorithmasgeneralizatiorof color his-
togrampeaksindexing anddescribeghe partof the system
whichwewill usethroughouthepaper Sectiord describes
aroomrecognitionsystenthatusescolor histogramgeaks
indexing of real room imagesand section5 discussests
implementation Experimentalesultson a databasef 330
imagesfrom 205differentroomsarepresentedh sectiong.
Finally section7 arguesthat histogrampeaksindexing can
be usefully appliedto other modalitiesbesidescolor and
discussesopicsfor futurework.

Il. BACKGROUND

While mary systemshave usedcolor histogramsto our
knowledgeonly one other hasuseda histogrampeaksas
a primary part of its representation. Das, Edward, and
Bruce [8] describeda nev multi-phase,color-basedim-
age retrieval system, FOCUS (Fast Object Color-based
gUery System).FOCUSis capableof identifying database
matchesfor multi-colored query objectswithin an image
in the presencef significantandinterferingbackgrounds.
In their approachthefirst phasematcheghe color content
which is representeds the peaksin the color histogram.
They split the imageinto a numberof “cells” and useda
split and memge stratgyy for peakdetection. A combined
list of peaksis producedoy meming multiple copiesof the
samepeak,anda labelis assignedo eachpeak. The his-
togrampeaksaredetectedy finding local maximain a 3-D
neighborhoodvindow. The mismatchscoreis givenby the
sum of the city block distanceshetweeneachquery peak.
Secondhasanatchesisethespatialrelationshipdbetween
color regionsin the imagewith the query using a spatial
proximity graph(SPG)structuredesignedby usinglocal-
ized color peaksin imagecells. They aimedto captureall
possibleadjacenciebetweercolorregionsin eachcell. The
SPGshaws all possiblepixel-level adjancencieshut adds
somefalseadjancencieaswell. The runningtime is of
the orderof O(n™) wheren is the size of the queryadja-
ceng/ matrixandm is themaximumnumberof instance®f
acolor label. The secondpohaseis a morecomputationally



intensive matchingstrateyy.

Findingthelocalizedcolorhistogranpeaksy usingsplit
and meme stratgy with peakdetectionis not a compact
representationf imageandtoo expensvea procesdor real
time smallmobileapplicationeventhey obsenedpeaks.As
we shallexplain, our representatiors very compactrepre-
sentatiorandallows oneto useit without ary seriouscom-
putationalcomplexity.

For the FOCUS system, the main goal of detection
of localized peaksis to createthe SPG graphto handle
scale/orientatiochangesBut this phaseaddsconsiderable
computation.In contrastwe handlescalingby using mul-
tilevel color histogramrepresentationf imagepeaks.Our
new compactepresentationf imageis very usefulfor en-
ablethe smallmachineto recognizetheir location.

I11. PROPOSED ALGORITHM
A. Color HistogramPeaksIndexing

The reductionof the vastamountof informationin im-
ageds oneof thebiggestbarrierfor recognitionin realtime.
The easeof recognitionin realtime depend®n this reduc-
tion and on the speed/accuracof an imageretrieval sys-
temwhich usedeaturefor describingmagesandmatching
stratgyy. For this purposeswe reducecdthe color informa-
tion of eachimageto acompactepresentatioby usingthe
color histogrampeaksandusedretrieval stratey in Fig.[1].

In an image-processingontet, the color histogramof
animagenormallyrefersto a multi-dimensionahistogram
of thepixel colorvaluesj.e. thedistribution of colorsin the
color space.Computingthemis easy;a primary difficulty
is the high costcomputinga similarity distancesbetween

suchthe queryhistogramandall theimagesin adatabases.

Thehistogramfeatureneed<go provide adiscriminatingca-

pability betweenimageswhich containseveral objectsto

the querywhile still finding the correctobjectwhenthere
have beenchangesn illumination, scaleandlocationof ob-

jects. Eventhoughsomeexamplesof color featurefor ob-

ject recognitionhave beenused,existing color featuresdo

not supportall the requirementdor animageretrieval en-

gine, especiallythe sizeof the databasendcomputational
demand®f indexing.

While the color histogrampreseres considerablecolor
information containedin animage, it is not well ascom-
pactarepresentationf imagerepresentatioasneededor
enablingsmallmobile machinesIn contrastthe color his-
togramrepresentatioby peaksallows to createa very use-
ful compactrepresentationf color histogramfor real-time
applicationson smallmachines.

For traditionalcolor histogramsit is difficult to maintain
stability for informationwhile changingesolution scaling,
andillumination. Using this measuretwo imagesmay be
consideredo bevery differentfrom eachothereventhough
they have completelyrelatedsemantics.We have investi-
gateda color histogrampeaksndexing schemeavherecom-
putationally efficient featuresare usedfor recognitionin-
steadof more sophisticatedechniques. Excellentresults
have beenobsened using a color histogrampeaksrepre-
sentatiorof the colorimages.

Ranked List
of Images
Fig. 1. A schematidistogrampeakindexing systemovervien

The main advantagef peak-orientedepresentatiolis
thereductionof computationatompleity andinformation
in realtime applicationsvhich resultsfrom thesmallersize
of the peakdetectionas well as simple handlingof vari-
oustypesof histogramshifts. Oftenin color histograms,
the location of peaksis more stablethan other histogram
bins. Spatially detectedpeakfeaturesare necessaryo ef-
fectively processsuchqueries. In addition, thesequeries
canbe pertainingregionsof differentshapessizesor reso-
lutions. Theemphasisn thepeakindexing representatiors
onacompactepresentationf animage,speedandmatch-
ing themaimsto allow invariantresolutionandscaling. If
the discriminatorypower of the peaksis not sufficient for
final identification,they canstill be consideredh powerful
“pre-filter”, reducingthe potentialmatchego a smallnum-
berwere more complex histogram,or otherfeature-based,
matchingcanbe performed.

The aim of representatiopeaksindexing is to narrav
thesearcho theimageswhich couldmatchthegivenquery
peaks.Simply statedtheiradvantagesreaneffective com-
pactrepresentationf imageinformation,computationaéf-
ficiengy, simplicity, speedJower storagerequirementand
lesssensitvity to smallchangesn cameraviewpoint.

B. DetectionOf Histogram Peaks

During the detectionof histogrampeaks all the distinct
colorsin the image computedas peaksin the HSV color
spacehistogramof imagesare usedto createanimagein-
dexing feature. The color spacerepresentingolorsalong
thehumanperceptuatlimensionss crucialin groupingcol-
orsbasedn color perceptuakimilarity. The popularRGB
color spaceis efficient for displayandwidely usedamong
color processingystembut inappropriatdor color feature
indexing and discrimination[9]. It alsodoesnot carry di-
rect semanticinformation aboutthe color. Oneimportant
criterion we usefor selectingthe color spaceis provided
intuitively, whereeachcomponentn this spacecontritutes
directly to visual perception. In order for color spaceto
provide useful characterizatiorof region color, eachcolor
in the color spacemustbevisually distinguishabldrom the
othersandsatishctorily includeall distinguishableolors.

Thethreeaxisof theHSV color spacestandfor hue,satu-
rationandvaluethe purposeof the color spaces to provide



userswith a moreintuitive meanof colors[10]. We have
choserHSV (H hue,S saturationandV value)color space
becausecolor image processingperformedindependently
on the color channelgdoesnot introducefalsecolors. Fur-
thermore,it is easierto compensatéor artifactsand color
distortions. Anotheradvantageof HSV color spaceis that
usersfind navigation intuitive within this color spacg11],
[12]. The capabilityof the luminanceandchromaticcom-
ponentsof a color is extremelyusefulin handlingimages
undernon-uniformillumination conditionssuchas shade,
highlight, strong contrast,and etc.[13]arrangedn sucha
waythatequalgeometriadistancegorrespondo equalper
ceptualdifferencesmakingit theideal color spacefor our
system. Using HSV one canignore the value axis com-
pletelyandconcentratg@rocessingolelyonthecolor com-
ponentsof the image. However, it ignoresthe fact that for
large valuesand saturation,hue differencesare more per
ceptuallyrelevantthansaturatiorandvaluedifferences.

The histogramis a graphshaving the numberof pixels
in animageat eachdifferentcolor valuefoundin thatim-
age. For example,a HSV color histogramwhich hasbeen
guantizedinto k binsfor H, | binsfor S andm bins for V
canberepresenteds H SV, . It is assumedhateachbin
will containarangeof colorscharacteristiof the region of
theimagelocalto thebin. In orderto the geta statistically
significantnumberof points,the bins are actuallylines of
eachpixelsin width. A colorhistogramis constructedrom
thepixel intensitieswithin bin.

The modalmethodis usedfor histogrampeaksndexing.
The algorithm, in short, first attemptsto find a the high-
esthistogrampeak. If successfuliry to locatethe position
of the tallest subpeaksn histogram. Having found these
peaks,look for the next sub-peaksthis is "the peakde-
tection”. Dependingon color distribution, the shapeof the
histogrampeaksmay containsharpor wide peaks. How-
ever, lookingatfigure3, acoupleof problemspresenthem-
sehes:

1. Thereis some,oftenfairly obvious, spikingin the his-
togram. Narrow spikesnearthe main peakcould be taken
for subpeak®y naive subpealdetectionalgorithm.

2. There are several rangesin the histogramwith zero
countsall of which could potentiallycontaintheinter-peak
minimum. Which we do select?

Our goalis to generatea subsetP aspeaksn histogram
HSV suchas P ¢ HSYV. In practicewe do not want
|P| > 7. Thussomeheuristicmethodfor selectingpeaks
on the histogramis required. There are several possible
methods. We useda methodwhich the first and mostob-
vioustakesthep = | P| highestpeaksof the histogramand
calltheseelement Py, Ps, ...., Pr } . For agivencolor his-
togram peaksindexing of image, I,,(Hp, Sy, V,) is com-
putedfor n imagesasindexing featurein the database.

C. HistogramPeakMatching

Discriminationpower of histogrampeaksallows the ma-
chinevision applicationto performin realtime by reducing
the requiredstorage. It alsohasa fast matchingstratayy,
whenwe comparedo that usingthe full histograminfor-

mation. Whendecidingthe matchingstrateyy by looking
for color similarity, it is very importantthatit is robustto
variationsin illumination andscaling. As explainedabove,
the 7 bins are selectedo the range0 to P. In our experi-
mentalwork, P = 6 sincevariationsof thepeakss enough
to recognizeheimagesin differentillumination andscale,
sothatthecomputechistogrampeaksndexing canbecom-
paredto theoriginal.

We examined the difference of peaks measurefor a
matchingstratgy. This approachis computationallyef-
ficient becausehe numberof peakbinsin the color his-
togramis muchlessthanin theall histogram.ThePeakDis-
tancemeasurebetween and D,, is definedPD(Q, D,,)
by theabsolutesumof their peakdifferencesasfollows

P
PD(Q,Dy) = Y min|QHSV (i) — D,HSV(j)|

i=0,5=0

wherep is the numberof peaksand@H SV andD, HSV
arethe HSV color histogramdor image@ and D,,. Even
thoughthis measurds a goodcriteria of the correlationof
the contentbetweentwo images. The mostcrucial advan-
tageof this distancemeasuras thatit is lessinsensitve to
local featurevariationsinsteadof comparingall histogram
bins.

After detection of the histogram peaksis done, the
time compleity of the retrieval processis just given by
O(plog(n)), wherep is the numberof query peaks,n is
the total numberof imagesin the databaseBy comparing
the original histogrampeakindexing of the imagewith the
queryimage,the resultingobtainedimageslist is ordered
by decreasingnatchscore.

IV. STABILITY OF HISTOGRAM PEAKS COMPARISON
MEASUREMENT

Thestability of themeasuremenisith respecto changes
in the histogramds an importantconditionfor usefulness
of histogrammatchingfor recognition. Suchchangesn a
histogranmaybecauseckitherby changesn resolution;l-
luminationandscaling.In our experimentalwork, we have
consideredhesehreeeffectsonstability of colorhistogram
peakslocation. We notethattheir exactlocationvaluesdo
notinfluencetheanalysissignificantly sincewe will exam-
ine the relative stability betweenall color histogrampeak
binsratherthan "absolutestability”. It is theability to dis-
criminatedifferentobjectsandthe invarianceto scalevari-
ationsby histogrampeakmatchingthataremoreimportant
thanabsolutestability. In thefollowing sectionwe show re-
sultsfor two differentresolution scaleof color histograms.

A. Stabilitywith DifferentResolution

In orderto examinethe stability of histogrampeakin-
dexing measurementwith respectto differentresolutions
for the samesize imageswe assumedchangeis created
by a physical processsuch as being farther away or via
a panoramicpyramid. Histogramsare only insensitve to
scalereductionif it is done by subsampling;real cam-
eras/opticsblur as the resolutionis reduced. Thus we
changeresolutionby using Gaussiarfiltering followed by
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Fig. 2. (a) Original Coffee Canlmage128 by 128 (b) 128 by 128 Im-
ageBlurred (Gaussiarblurring) (c) Imagedown-sizedto 64 by 64 (d)
Blurred 64 by 64 Image(e) Secondmagedown-sizedto 32 by 32

Fig. 3. (a)Palacelmage(b)Redflaver Image(c) Historic Scendmage(d)
Art Image(e) Snawvflower Image

subsamplingwhich can be seenas an approximationof
image blur which accompaniegrue resolutionreduction
in cameras. Fig.[2b] and [2d] shov an example image
with addedGaussiarblurring effect while down-sizingin
Fig.[2c] and[2e] for the originalimageis in Fig.[2a].

For eachof the examinedimages,we shov experimen-
tal resultsfor a color histogramf differentresolution.As
a first result,it indicatesthat the peaksof histogramggive
more stableresultsthanthe restof histogrambins with in-
dependencef thecomparisormeasurementlableq 1], [2]
and[3] shov examplesof how the scalingprocessesultsin
a blurring effect for the blurredversionof differentimages
in Fig.[3] andIn figures5—7,we shon one-dimensionahis-
togramsfor the original anda reducedresolutionPALA CE
image.

Note that in the first case,the Palaceimage, hashigh-
frequeng textures such that the largest single peak in

[ ImageName || Original | Blur || Downsize |

Palace 233,240 | 18,238 18,238
Redflaver 10,118 | 10,118 10,118
Historic Scene|| 182,231 | 182,231 | 182,231
Art 235,345 | 235,345 | 235,345
Snavflower 17,180 | 17,180 17,180
TABLE |

SUMMARY OF THE LARGEST TWO HUE PEAK VALUES IN
EXPERIMENTAL WORK RESULTS.

[ ImageName || Original || Blurring || Downsize ||

Palace 27,59 15,50 15,59
Redflaver 59,92 59,92 59,92
Historic Scene|| 15,69 15,69 15,69
Art 20,42 20,42 20,42
Snowflower 15,50 15,50 15,50

TABLE Il
SUMMARY OF THE LARGEST TWO SATURATION PEAK VALUESIN
EXPERIMENTAL WORK RESULTS.

the original imageis very small after blurring and a new

hue, that was rather weak in the original, has become
the dominantpeak. Of course,the “high-frequeng” tex-

turesare were one expectssuchblurring to blendthe col-

ors. But whenscaleis alsoallowed to vary, almostevery

scene/objeatill eventuallyhave suchblending thoughit is

lesslikely to moveapeak.Theremainingexamplesdemon-
strateobvious stability results which areobtainednot only

for the absolutemeasurementisut alsofor the otherpeak-
orientedmeasurements.

B. Stabilitywith DifferentScale

Therecognitionof the scaledimagesis difficult andim-
portantin theimageretrieval systembecausef significant
naturein thevision. Most of theresearchandlesscalepro-
cessasdown-sampling. On the otherhand,scalingis not
independenfrom changingthe resolutionin the natureof
vision processin orderto calculatehistogramsat different
scalewe apply two principles: in thefirst stepwe usethe
Gaussiarblurring to preparetheimagefor down-sampling
andsecondlywe down-sampleoy ZL,, Thereforeijt is suffi-
cientto reflectchangeon the color histogramby scalingin

[ ImageName || Original || Blurring || Downsize ||

Palace 45,60 49,55 45,55
Redflaver 28,62 28,59 28,59
Historic Scene|| 65,97 67,96 68,95
Art 21,70 21,69 18,70
Snavflower 5,93 5,97 7,97

TABLE Il
SUMMARY OF THE LARGEST TWO VALUE PEAK VALUES IN
EXPERIMENTAL WORK RESULTS.
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Fig. 4. H,SandV Histogramsgor Original 128x128Palacelmage.
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Fig.5. H,SandV Histogramdor 64x64Palacelmage.

HSY Color Space Histogram for original image 128x128

T T T T T
Fra-rrra-mrTa-e

T T
Fra-rrTa-mrT

2hhh h 100
Saturation

Fig.6. H,SandV Histogramsor 128x128Historic Scenemage.
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Fig. 7. H,SandV Histogramsfor 64x64 Historic Sceneimage. While
therearesignificantchangesthe peaksarein approximatelythe same
location.

the natureof vision.

V. HISTOGRAM PEAKS INDEXING TECHNIQUE FOR
THE ROOM RECOGNITION SYSTEM

In the RoomRecognitionsystem,omnidirectionalvideo
input capturesthe dynamic visual ervironment and the
color histogranpeaksareusedto identify roomsin building
by matchingpeaks. More specifically we seekthe ability
to recognizeour location, suchas particularclassroomsr
offices, thatare by a systemon a mobile robot, intelligent
wheelchaiyor wearablecomputer

A. Omni-DirectionalCamen

The systemusesan omni-directionalcamerasystemto
captureits ervironment.Corventionalimagingsystemsare
quitelimited in their field of view[14]. And would required
matchinginto amuchlargersetof imagesandalsohandling
partialmatchesvherethecameraview matchegpartsof two
differentinitial images.Usingacamerahatimagesa view-
ing hemispherghereis no needto have multiple views for
aroom, andno needfor partial matches.The only occlu-
sions/gapsare thosefrom objectsoccludingeachotherin
theroom. In very large rooms,the view from differentar-
easof the room canbe significantly differentas we index
sub-rgjionsof theroom. We alsonotethatsinceno spatial
informationwasused theorientationof thecamerasinceit
capturesahemisphereis irrelevant(but wasapproximately
the samein our mary of our datasetso we cantry spatial
techniquesatalaterdate.)

In our systema parabolicmirror is imagedby an ortho-
graphiclensto producetheimage. The combinationof or-
thographicprojectionand the parabolicmirror providesa
singleviewpoint, at thefocusof the parabolicsurface. The
imageof themirror, calledthe paraimagecontainsthefull
view information,independenbf the mirror size. The size
of theomni-directionaimagedepend®ntheimagemagni-
ficationandthe sizeof the mirror. The panoramigyramid,
[15], usesa setof parabolicmirrors stacled oneon top the
other Mirrors canprovide arny resolutionreductiondesired.
In this caseof the physicalpyramidsthereis a small view-
point betweenthe differentresolutions,its impact on the
generatedmagesis insignificant. While PanoramicPyra-
mids canhave ary numberof levels, this paperusesa sys-
temwith 2 levels, with afactorof 4 resolutionreductionin
eachof thex andy direction.

B. RoomIDasHistogram Peaks

Thecolorinformationof eachimageis reducedo acolor
histogrampeaksrepresentatiothat we call the roomID of
theimage. A roomID containsa varying numberof colors
as peaks,eachrepresentinga peakof color histogramin
the HSV color space.The numberof peaksin the roomID
varieswith the color complexity of the image. Currently
we storecomputedfeaturepeakvaluesfor roomimagesin
flat files.

First, the roomis detectedfrom the building using the
automatedomni multiresolutionor pyramid structure. To
computethe roomID of a color omni image,we capturea
panoramicpyramid imagein RGB andthentransformthe



imageinto a sampledHSV color space.ln our transforma-
tion, thesampledHSV color spacecontains360 Hues,100

Saturationsand 100 Values. We detectedcandkeptjust top

7 peaksof omniroomcolorimagefor eachlevel.

For room recognitionusing color histogramspeaks,we
comparea histogram7 from a databasdo a newly ob-
senedhistogramH.

In orderto definea similarity measurédetweertwo roo-
mIDs, we introducethe notion of the HistogramPeakDis-
tance(HPD)Thisis the minimal amountof 'match’ needed
to associatea roomlID into with anitem in the database.
When comparingone roomID to anothey the match is
the sum of the Absolutedistancesloneby comparingthe
weightof closesthistogrampeaksof the sourceroomID to
thoseof the destinatiorroomID. Althoughwe do not claim
thatthe HPD is a perceptualistancejt is an extensionof
distance®f singlecolorsin theHSV colorspacewhichare
perceptuadistancesto distancedetweersetsof colors. A
full Hausdorf measurdetweerthesetscouldbecomputed
andwill beevaluatedn thefuture. In practice aswe shav
in the following sectionsthe HPD leadsto goodresults. It
alsoallows usfor muchlesscomputationatomplexity: we
comparejust 7 peaksand don't careaboutthe remaining
information. This approachachiezesmuchfastercompari-
sonby storingonly 7 peakdor eachchannebf colorspace.
Thus,it is possiblefor differentlocationimagesof thesame
roomhaving thesamefeatureto recognizen differentcolor
histogramcontents.

VI. IMPLEMENTATION

To the bestof our knowledge,thereareno image-based
roomrecognitionsystemwith which to compare However
omni-basedoomrecognition,hasthe samecomponent®f
ary imageindexing recognitionsystem. While structural
informationcouldbeusedwe consideronly colorinforma-
tion at this time. (Again, if it is not sufficient, we could
just be usingit asa good prefilter). As we shall see,this
informationaloneis oftensufficientfor roomidentification.

While the HPD is indeedat the core of our imagere-
trieval system,andhasprovenvery effective, in this paper
we wantto emphasize relatedbut distinctuseof this met-
ric. Onceimageretrieval systemdind the bestmatchedor
agivenquery they usuallydisplaythemin alist, sortedby
their similarity to the query While this might suffice if the
desiredmageis in thatlist, thisis notalwaysthecasgespe-
cially whenwe have only avagueideaof thedesiredmage
or approximateinput). In this case,it is desirablefor the
systemdisplaya coherentview of the queryresultswhere
thereturnedmagesshouldbearrangedn orderof their dis-
tancesfrom the query With sucha view, the usercansee
therelationsbetweertheimagespetterunderstandiow the
queryis performed,and be guidedto successie queries.
OurHPD approximateshe perceptuatlifferencethatsepa-
ratestwo roomIDs. The computationof the differencesf
thesecolor peaksis calledamatching.

Givena setof n roomstogetherwith the HSV color his-
togrampeaksp;; for eachof them,the HPD techniquecom-
putesheminimumAbsolutedistancesf peaksbetweerthe

Fig. 8. a) PLSOBNORH (b) PL508SOUTH (c) PL50SWEST (d)
PL508EAST(e) PL50OSCENTER

queryandtheroomsin M,,. Ourformulationof this prob-
lem requiresminimizing the following quantity:

n 2 6
MATCH:Qn: min Z--—le
33 ipos —0u

MATCH is anonngyative numberthatindicateshow well
distancesirepreseredin thematching.ZeroMATCH(£,,)
indicatesa perfectfit.

Fig.[5] shavs 5 panoramigyramidimagestaken at dif-
ferentlocationswithin PL508. Supposéhatwe arelooking
for imagesof thePL508room. Thisroomwill becharacter
ized by the peaksof eachhue, saturationandvalue chan-
nels,sowe useasour queryfind imageswith that peaks
and don'’t care other colors”. Matching algorithm results
shav the ten bestmatchesfrom the databases sortedby
their absolutematchdifferenceto thequery

VIl. EXPERIMENTAL RESULTS

The proposedechniqueis implementedusing X/Motif
and C++ on an IBM compatiblePentiumPC with MMX,
operatingat 200MHz. Acquisition, model building and
recognitionare all donein real time. To betterevaluate
the performanceof the databasewe tried to populatethe
databaseaisingroom imageswith large varieties,and also
includeda numberof similar rooms. The databasés cur-
rently containsmore than 300 color omni room images.
Roomsto beincludedin the databasearetakenundertheir



Fig. 9. a) PL508(b) PL503(c) PL5thFLOORVALKWAY (d) PL403(e)
PL450(f) PL6thFLOOR

normal(nearlywhite) illumination. We areplanningto im-

prove our methodby addingmary moreimagesin thennear
future. A singleomniview of aroomis representatie of the
room’s chromaticity characteristics.For mary rooms, its

color distributionsare similar regardlessf changingcam-
eralocation.For somerooms,differentlocationsthatresult
in significantocclusionor disocclusiorof colorsaretreated
asseparatentriesin thedatabasejut neverthelessabelled
asthesameroomlocation.

To demonstratandexaminetheeffectivenesf thepro-
posedtechnique we conducteda seriesof recognitionex-
perimentsusingomni room imagedatabas@btainedfrom
205 roomsby usingpeaks. The histogrampeaksasimage
contentindexing is usedto computethe databasénvariant
feature. We demonstrateecognitionperformanceon sev-
eral color omni room imagesof differentlocationand il-
lumination at sameheightin sameroom. As an invariant
indexing featureof omni roomimage,the color histogram
peakswas computedfrom an image capturedat approxi-
mately 12:00PM.To insurevaryingillumination was han-
dled,andtestimagesweretakenunderarangeof timesand
lighting conditions,e.g. usingimagesfrom 9AM, 11AM,
1PM,3PM,5PMand7PM.

Fig.[6] illustratessomeexampleof omniroomimagesn
our database.lllumination effects on color, while signifi-
cantdo notreproducen the proceedingsandalsointesnity

ascanbe seein Fig.[7] image. In our experimentalsetup,
all imageswere obtainedusinga custompanoramicpyra-
mid system.While obtainingthe roomimages peopleand
all otherstuff wereallowedto move freelyin theroom.
Overall testingwith this databaseof 394 imagesfrom
205roomsproducedarecognitionrateof 92 percent Many
of thefailuresoccuratextremelightning changesyery sim-
ilar rooms(asoftenoccurson a college campus)andmod-
eratevariationsin camergplacementvithin theroom.

VIIl. CONCLUSION AND FUTURE WORK

In this paper a computationallyefficient color content
basedhistogrampeaksindexing representatiortechnique
was proposed. The experimentswith real imagesshoved
that representatiorof color histogrampeaksis a suitable
featurefor large variation of resolutionand scaling. The
proposechistogrampeaksindexing techniquefor realtime
applicationsis very promising for its computationaleffi-
ciengy andits requireddatastorage.The speedof the sys-
temandthe smallstorageoverheadmale it suitablefor use
in large databasen real time. Futureinvestigationswill
be directedto developingmultilevel color histogrampeaks
representatiof multiresolutionimagestechniquesvhich
combinethe proposedapproachndexing method.
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