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Abstract
Face and eye detection algorithms are deployed in a wide

variety of applications. Unfortunately, there has been no
quantitative comparison of how these detectors perform un-
der difficult circumstances. We created a dataset of low
light and long distance images which possess some of the
problems encountered by face and eye detectors solving real
world problems. The dataset we created is composed of re-
imaged images (photohead) and semi-synthetic heads im-
aged under varying conditions of low light, atmospheric
blur, and distances of 3m, 50m, 80m, and 200m.

This paper analyzes the detection and localization per-
formance of the participating face and eye algorithms com-
pared with the Viola Jones detector and four leading com-
mercial face detectors. Performance is characterized un-
der the different conditions and parameterized by per-image
brightness and contrast. In localization accuracy for eyes,
the groups/companies focusing on long-range face detec-
tion outperform leading commercial applications.

1 Introduction
Over the last several decades, face/eye detection has
changed from being solely a topic for research to being
commonplace in cheap point-and-shoot cameras. While
this may lead one to believe that face detection is a
solved problem, it is solved only for easy settings. Detec-
tion/localization in difficult settings is still an active field
of research. Most researchers use controlled datasets such
as FERET[14] and PIE[11], which are captured under con-
trolled lighting and blur conditions. While these datasets
are useful in the creation and testing of detectors, they give
little indication of how these detectors will perform in diffi-
cult or uncontrolled circumstances.

In ongoing projects at UCCS and Securics addressing
long-range and low-light biometrics, we found there were
significant opportunities for improvement in the problems
of face detection and localization. Face detection is just the
first phase of a recognition pipeline and most recognition
algorithms need to locate features, the most common being
eyes. Until now, there has not been a quantitative compar-
ison of how well eye detectors perform under difficult cir-
cumstances. This work created a dataset of low light and
long distance images which possess some of the problems
face detectors encounter in difficult circumstances. By chal-
lenging the community in this way, we have helped iden-
tify state-of-the-art algorithms suitable for real-world face
and eye detection and localization and we show directions
where future work is needed.

This paper discusses twelve algorithms. Participants
include the Correlation-based Eye Detection algorithm
(CBED), a submission from DEALTE, the Multi-Block
Modified Census Transform algorithm (MBMCT), the Min-
imum Output Sum of Squared Error algorithm (MOSSE),
the Robust Score Fusion-based Face Detection algorithm
(RSFFD), SIANI, and a contribution from UCSD MPLab.
In addition, we compare four leading commercial algo-
rithms along with the Viola Jones implementation from
OpenCV 2.1. In Table 1, algorithms are listed in alphabet-
ical order with participants on the top section and our own
contributions in the bottom.

2 Background
While many toolkits, datasets, and evaluation metrics exist
for evaluating face recognition and identification systems,
[14, 1] these are not designed for evaluating simple face/eye
detection/localization measures. Overall there has been lit-
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tle focus on difficult detection/localization, despite the ob-
vious fact that a face not detected is a face not recognized –
multiple papers show that eye localization has a significant
impact on recognition rates [10, 7].

The Conference on Intelligent Systems Design and Ap-
plications [8] performed a face detection competition with
two contestants in 2010. Their datasets included a law en-
forcement mugshot set of 845 images, controlled digital
camera captures, uncontrolled captures, and a “tiny face”
set intended to mimic captures from surveillance cameras.
All except the mugshot database had generally good qual-
ity. In their conclusions, they state “Obviously, the biggest
improvement opportunity lies in the surveillance area with
tiny faces.”

There have been a few good papers evaluating face de-
tectors. For example, [35] uses a subset of data from LFW,
and also considered elliptical models of the ideal face lo-
cation. However, LFW is a dataset collected using auto-
mated face detection with refinement. Similarly, [3] lever-
ages parts of existing data and spends much of their discus-
sion about what is an ideal face model. The data in these
is presented as being somewhat challenging but still most
tested detectors did well. We note, however, that evaluating
face detectors against an ideal model is not very appropri-
ate, and in this paper we evaluate detectors with a much
more accepting model of a detection – we consider a detec-
tion correct if the reported model overlaps the ground truth.

Many descriptions of face detection algorithms include a
small evaluation of their performance, but they often eval-
uate only the effects of different changes within that algo-
rithm. [37, 28] Comparisons to others are usually done in
the context of proving that the discussed algorithm is better
than the state-of-the-art. Because of the inconsistent met-
rics used, it is often impossible to compare the results of
these kinds of evaluations across papers.

The results of this competition show that there is room
for improvement on larger, blurry, and dark faces, and espe-
cially so for smaller faces.

3 Dataset
We set out to create a dataset which would highlight some
of the problems presented by somewhat realistic but diffi-
cult detection/localization scenarios. To do this, we created
four sub-sets, each of which presents a different scenario in
order to isolate how a detector performs on specific chal-
lenges. Our naming scheme generally follows scenario-
width, where scenario is the capture conditions or distance
and width is the approximate width of the face in pixels.
Note that width alone is a very weak proxy for resolution
and many of the images have significant blur within result-
ing in effective resolution sometimes being much lower.
The experiments use the photohead approach for semi-
synthetic data discussed in [4, 5] allowing control over the
conditions and including many faces and poses.

(a) 80m-500px (b) Dark-150px

(c) 200m-300px (d) 200m-50px

Figure 1: Cropped samples from the dataset

3.1 80m-500px
The highest quality images, the 80m-500px sub-set, were
obtained by imaging semi-synthetic head models generated
from PIE. They are displayed on a projector and imaged at
80 meters indoors using a Canon 5D mark II with a Sigma
EX 800mm lens; see Figure 1a. This camera lens combina-
tion produced a controlled mid-distance dataset with min-
imal atmospherics and provides a useful base line for the
long distance sub-sets.

3.2 200m-300px
For the second sub-set, 200m-300px, we imaged the semi-
synthetic PIE models, this time from 200 meters outside;
see Figure 1c. We used a Canon 5D mark II with a Sigma
EX 800mm lens with an added a Canon EFF 2x II Extender,
resulting in an effective 1600mm lens. The captured faces
suffered varying degrees of atmospheric blur.

3.3 200m-50px
For the third sub-set, we re-imaged FERET from 200 me-
ters; see Figure 1d for a zoomed sample. We used a Canon
5D mark II with a Sigma EX 800mm lens. The resulting
faces were approximately 50 pixels wide and suffered at-
mospheric blur and loss of contrast. We chose a subset of
these images, first filtered such that our configuration of Vi-
ola Jones correctly detected the face in 40% of the images.
We further filtered by hand-picking only images that con-
tained discernible detail around the eyes, nose, and mouth.

3.4 Dark-150px
For the final sub-set, we captured displayed images (not
models) from PIE[11] at close range, approximately 3m, in
a low light environment, with an example in Figure 1b. We
captured this set with a Salvador (now FLIR) EMCCD cam-
era. While the Salvador can operate in extremely low light
conditions, it produces a low resolution and high noise im-
age. The noise and low resolution create challenging faces
that simulate long-range low-light conditions.
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3.5 Non-Face Images
To evaluate algorithm performance when given non-face
images, we included a proportional number of images that
did not contain faces. When evaluating the result, we also
considered the false positives and true rejects of images in
this non-face dataset. The “non-faces” were almost all nat-
ural scenes obtained from the web – most were very easily
distinguished from faces.

3.6 Dataset Composition
Given these datasets, we randomly selected 50 images of
each subset to create 4 labeled training datasets. The train-
ing sets also included the groundtruth for the face bounding
box and eye coordinates. The purpose of this set was not to
provide a dataset to train new algorithms; 50 images is far
too few for that. Instead, it allowed the participants to inter-
nally validate that their algorithm could process the images
and the protocol with some reasonable parameter selection.

For testing, we randomly selected 200 images of each
subset to create the four testing sets. The location of the
face within the image was randomized. An equal number
of non-face images was added, and the order of images was
then randomized.

4 Baseline Algorithms
Detailed descriptions of the contributors’ algorithms are
presented as appendices A through G.

We also benchmarked the standard Viola Jones Haar
Classifier (hereafter VJ-OCV2.1), compiled with OpenCV
2.1 using the frontalface alt2 cascade, a scale of 1.1, 4 min-
imum neighbors, 20× 20 minimum feature size, and canny
edge detection enabled. These parameters were chosen by
running a number of instances with varying parameters on
training data. The choice was made to let Viola Jones have
a high false positive rate with a correspondingly higher true
positive rate. This choice was made due to the difficult na-
ture of the dataset. Algorithms such as CBED use similar
Viola Jones parameters. These parameters typically yield
high performance in many scenarios[28].

For completeness, we compared the algorithms’ perfor-
mance against four leading commercial algorithms. Two
of these (“Commercial A (2005)” and “Commercial A
(2011)”) are versions from the same company from six
years apart. Commercial A (2011) was also one of the best
performers in [3].

We aimed to detect both face bounding boxes and eye
coordinates. Because Commercial B only detects eye coor-
dinates, we generate bounding boxes by using the ratios de-
scribed in csuPreprocessnormalize.c, part of the
CSU Face Evaluation and Identification Toolkit [1]. Simi-
larly, we define a baseline VJ-based eye localization using
the above Viola Jones face detector. Eyes are predefined
ratios away from the midpoint of the bounding box along

the X and Y axes. These ratios were the average of the
groundtruth of the training data released to participants.

5 Evaluation metrics
We judged the contestants based on detection and localiza-
tion of faces and the localization accuracy of eyes. To gather
metrics, we compared each contestant’s results with hand-
created groundtruth.

For faces, we initially considered using a accuracy mea-
sure but found that these systems all have different face
models and any face localization/size measurement would
be highly biased. Thus our face detection evaluation met-
rics are comparatively straightforward. In Table 1, a con-
testant’s bounding box is counted as a false positive if it
does not overlap the groundtruth at all. Because all of the
datasets (modulo the non-face set) have a face in each im-
age, all images where the contestant reported no bounding
box count as false rejects. Because some algorithms re-
ported many false positives per image on the 200m-50px
set, Table 1 lists the number of images which contain an
incorrect box as column FP′ for this set. In the non-face
set, only true rejects and false positives are relevant because
those images contain no faces.

For these systems, eye detection rate is equal to face de-
tection rate and is not reported separately. For eyes, local-
ization is the critical measure. We associate a localization
error score defined as the Euclidean distance between each
groundtruth eye and the identified eye position. To present
these scores, we use a “localization-error threshold” (LET)
graph, which describes the performance of each algorithm
in terms of the number of images that would be detected
given a desired distance threshold. In Figure 2, we vary al-
lowable error on the X axis and for each algorithm plot the
percentage of eyes at or below this error threshold in the
Y-axis.

6 Results
The results of this competition are summarized in Table 1
and graphically presented as LET curves in Figure 2 as de-
scribed above. To summarize results and rankings, we use
the F-measure (also called F1-measure), defined as:

F (precision, recall) =
2× precision× recall

precision + recall
, (1)

where precision is TP
TP+FP and recall is TP

TP+FR . TP is the num-
ber of correctly detected faces that overlap groundtruth, FP
is the number of incorrect bounding boxes returned by the
algorithm, FP′ is the number of images in which an incor-
rect bounding box was returned, and FR is number of faces
the algorithm did not find. Here is a brief summary of our
contestants’ performance over each dataset.
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80m-500px 200m-300px 200m-50px Dark-150px Nonface
TP FP FR F TP FP FR F TP FP FP′ FR F TP FP FR F TR FP

Pa
rt

ic
ip

an
ts

CBED 194 0 6 0.985 196 0 4 0.990 100 505 184 8 0.248 194 0 6 0.985 763 51
DEALTE FD 0.4.3 191 1 9 0.974 177 2 23 0.934 11 120 81 115 0.066 179 0 21 0.945 742 70

MBMCT 192 1 8 0.977 191 7 9 0.960 1 45 31 168 0.008 178 0 22 0.942 789 13
MOSSE 69 11 120 0.493 68 92 40 0.378 27 147 147 26 0.144 132 7 61 0.779 702 98
PittPatt 198 0 2 0.995 194 0 6 0.985 0 0 0 200 0.000 191 0 9 0.977 800 0
RSFFD 198 0 2 0.995 200 0 0 1.000 0 1 1 199 0.000 194 0 6 0.985 799 1
SIANI 177 5 18 0.927 178 5 17 0.930 0 98 98 102 0.000 122 0 78 0.758 726 74

UCSD MPLab 196 1 3 0.987 195 1 4 0.985 5 8 8 187 0.047 190 0 10 0.974 791 9

N
on

-
pa

rt
ic

ip
an

ts Commercial A (2005) 192 0 8 0.980 173 0 27 0.928 5 6 6 189 0.047 107 0 93 0.697 638 162
Commercial A (2011) 144 0 56 0.837 187 0 13 0.966 0 0 0 200 0.000 105 0 95 0.689 800 0

Commercial B 198 0 2 0.995 177 20 3 0.892 6 156 156 38 0.033 177 11 12 0.912 342 458
OpenCV 2.1 198 54 2 0.876 200 118 0 0.772 80 280 152 26 0.286 195 6 5 0.973 615 257

Table 1: Contestant results showing True Positives(TP), False Positives(FP), False Images(FP′), and False Rejects(FR) on
face images. For Nonface, TR is no-face and FP is each incorrectly reported box. See Section 6 for details and discussion.

6.1 80m-500px
In this set, three algorithms tied for the highest F-score:
RSFFD, PittPatt SDK, and Commercial B (F=0.995), miss-
ing faces in only two images. UCSD MPLab (F=0.987)
secured the fourth-highest F-score. The lowest F-score
belonged to MOSSE (F=0.49). The second lowest score
was from Commercial A (2011) (F=0.837). Interestingly,
the old version of Commercial A (2005) (F=0.980) outper-
formed the newer version with fewer false rejects.

While most algorithms did well in face detection, the top
of Figure 2, we see that the LET graph clearly separates
the different algorithms, with CBED doing much better at
under 15 pixels error while RSFFD does second best and
PittPatt SDK has higher percentage of eye localization when
allowing errors between 18-25 pixels.
6.2 200m-300px
This dataset also had large size faces, but at a greater
distance and slightly lower resolution the contestants per-
formed very well overall. The algorithm with the highest
F-score was RSFFD (F=1.00), who impressively found no
false positives and no false rejects. A close second was
CBED (F=0.990). MOSSE (F=0.378) had the lowest F-
score by far, detecting about one third of the images in the
dataset. Second worst was VJ-OCV2.1 (F=0.772), finding
half as many false positives as it found true positives.

Again while most algorithms did well in face detection,
the middle of Figure 2 clearly separates the different al-
gorithms. CBED performed much better than the rest at
under 15 pixels error and RSFFD performed second best.
This time, PittPatt SDK is the 3rd best overall, among the
best percentage of eye localization when allowing errors be-
tween 18-25 pixels. Surprisingly, the fixed ratio eye detec-
tor based on VJ-OCV2.1 does better than most algorithms
including 3 commercial algorithms.
6.3 200m-50px
This dataset had the lowest resolution and most algorithms
performed very poorly. RSFFD, SIANI, PittPatt SDK, and
Commercial A (2011) (F=0.00) found no faces at all and
MBMCT (F=0.01) found one face. Commercial A (2005)
(F=0.05) outperformed its newer version (F=0.00) again.

A few algorithms did better, but still not near as well as
on other datasets. While CBED (F=0.248) found more
true positives than VJ-OCV2.1 (F=0.286), CBED found
505 false faces in this dataset of 200 images, whereas VJ-
OCV2.1 reported 280 false positives. MOSSE (F=0.144)
had the third-highest F-score and the third most true pos-
itives. Because it returned at most one box per face, it is
likely the most pragmatic contestant for this set. The sub-
mission from DEALTE (F=0.066) had the fourth-highest
F-score. With such poor detection, eye localization is
not computable or very poor for most algorithms. Only
CBED and VJ-OCV2.1 had measurable eye localization
(not shown). While they have high false detect rates on
the faces, the eye localization could allow subsequent face
recognition to determine if detected faces/eyes are really
valid faces.

6.4 Dark-150pix
This dataset was composed of low light but good resolu-
tion images, and many algorithms did well during detec-
tion. CBED and RSFFD (F=0.985) tied for highest F-
score, both missing six faces. PittPatt SDK (F=0.977) had
third-highest. The algorithms with the lowest F-scores were
Commercial A (2011) (F=0.689) and Commercial A (2005)
(F=0.697). As usual, the old version of this commercial al-
gorithm outperformed the new version; both detected just
over half of the images in the set.

In the dark data, the eye localization of CBED, PittPatt
SDK, RSFFD and UCSD MPLab all did well. Again,
VJ-OCV2.1 outperformed many other algorithms including
two commercial algorithms.

6.5 Nonface
Normal metrics such as “true positives,” “false rejects,” and
“F-score” do not apply in this set because this set contains
no faces. Its purpose is to measure false positive and true
reject rates. PittPatt SDK and Commercial A (2011) (TR:
800) both achieved perfect accuracy. RSFFD (TR: 799)
falsely detected one image, and UCSD MPLab (TR: 791)
falsely detected only nine. The algorithms that reported
the most false positives were Commercial B (TR: 342), VJ-
OCV2.1 (TR: 615), and Commercial A (2005) (TR: 638).
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Eye localization error thresholds (LET) on 80m-500px
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Eye localization error thresholds (LET) on 200m-300px
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Eye localization error thresholds (LET) on Dark-150px

Figure 2: Eye Localization Error Threshhold (LET) curves.
See Section 5 for details.

For our other datasets, contestants could use the as-
sumption that there is one face per image to their advan-
tage by setting a very low detection threshold and returning
the most confident face. However, in a real-world setting,
thresholds must be set to a useful value to reduce false pos-
itives. This was not always the case; for example, the sub-
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Figure 3: Detection Characteristic Curve. Measures how
detection rate changes with image brightness and contrast.
See Section 6.6 for a detailed description.

mission from DEALTE found 70 false positives in the Non-
face set but only 3 total false positives in the 80m-50px,
Dark-150px, and 200m-300px sets.

6.6 Detection Characteristic Curves
The above metrics tell us how the algorithms compare on
different datasets, but why did they fail on certain im-
ages? We cannot answer definitively, but we can examine
what image qualities make a face less likely to be detected.
We examined this question along the dimensions of image
brightness and image contrast by drawing “Detection Char-
acteristic Curves (DCC)” as seen in Figure 3.

The X-axis of a DCC curve is image rank for the par-
ticular characteristics; where images are sorted by bright-
ness (mean) or contrast (standard deviation). The Y-axis is
a moving average of the face detection rates where a true
positive counts as 1.0 and a false reject counts as 0. For this
graph, we only count a detection as a true positive if both
eyes are within 1

10 of the average inter-ocular distance for
that dataset. By graphing these metrics this way, we can
present a rough sense of how detection varies as a function
of brightness or contrast. Because these graphs are not bal-
anced (for example, Dark-150px contains most of the dark-
est images), we plot the source for each image as a small
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bar within a strip at the bottom of the graph to gain a better
view of the characteristic composition. From top to bottom,
these dataset strips are 80m-500px, 200m-300px, and Dark-
150px. Images from 200m-50px are not included due to the
poor performance.

The brightness DCC reveals that detection generally in-
creases with increasing brightness. MOSSE and the sub-
mission from DEALTE have lowest detection rates in im-
ages of mid-brightness, but Commercial A (2011) peaks at
mid-brightness.

For the contrast DCC, most of the algorithms were very
clearly separated. With some algorithms (VJ-OCV2.1,
Commercial B), detection rates increased with contrast.
Other algorithms (the submission from DEALTE, MOSSE,
SIANI, and UCSD MPLab) had a local maximum of detec-
tion rates in mid-contrast images. Some algorithms (SIANI,
UCSD MPLab, and PittPatt SDK) exhibited a drop in per-
formance on images of mid-high contrast before improving
on the high-contrast images in the 80m-500px set. Others
(Commercial A (2011)) exhibited the opposite trend. These
results suggest that researchers should focus on improving
detection rates in images of low brightness and low contrast.

7 Conclusions
This paper presented a performance evaluation of face de-
tection algorithms on a variety of hard datasets. Twelve dif-
ferent detection algorithms from academic and commercial
institutions participated.

The performance of our contestants’ algorithms ranged
from exceptional to experimental. Many classes of algo-
rithms behaved differently on different datasets; for ex-
ample, MOSSE had the worst F-score on 80m and 200m-
300px and the third highest F-score on 200m-50px. None
of the contestants did particularly well on the small, dis-
torted faces in the 200m-50px set; this is a possible area for
researchers to focus on.

There are many opportunities for future improvements
on our competition model. For example, future competi-
tions may wish to provide a more in-depth analysis of im-
age characteristics, perhaps comparing detection rates on
images of varying blur, in-plane and out-of-plane rotation,
scale, compression artifacts, and noise levels. This will give
researchers a better idea of why their algorithms might fail.
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Appendices: Participants Algorithms
A CBED

BRIAN HEFLIN
Securics Inc, Colorado Springs, CO

It can be argued that face detection is one of the most
complex and challenging problems in the field of com-
puter vision due to the large intra-class variations caused
by the changes in facial appearance, expression, and light-
ing. These variations cause the face distribution to be highly
nonlinear and complex in any space which is linear to the
original image space. Additionally, in applications such
as surveillance, the camera limitations and pose variations
make the distribution of human faces in feature space more
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dispersed and complicated than that of frontal faces. This
further complicates the problem of robust face detection.

To detect faces on the two datasets for this competi-
tion, we selected the Viola-Jones face detector [37]. The
Haar classifier used for both datasets was the haarcascade-
frontalFace-alt2.xml. The scale factor was set at 1.1 and the
“minimum neighbors” parameter was set at 2. The Canny
edge detector was not used. The minimum size for the first
dataset was (90,90) by default and (20,20) for 200m-50px.

A.1 Correlation Filter Approach for Eye Detection

The correlation based eye detector is based on the Uncon-
strained Minimum Average Correlation Energy (UMACE)
filter [16]. The UMACE filter was synthesized with 3000
eye images. One advantage of the UMACE filter over other
types of correlation filters such as the Minimum Average
Correlation Energy (MACE) filter [13] is that over-fitting
of the training data is avoided by averaging the training
images. Because eyes are symmetric, we use one filter to
detect both eyes by horizontally flipping the image after
finding the left eye. To find the location of the eye, a 2D
correlation operation is performed between the UMACE
filter and the cropped face image. The global maximum
is the detected eye location. One issue of correlation
based eye detectors is that they will show a high response
to eyebrows, nostrils, dark rimmed glasses, and strong
lighting such as glare from eye glasses [17]. Therefore, we
modified our eye detection algorithm to search for multiple
correlation peaks on each side of the face and to determine
which correlation peak is the true location of the eye.
This process is called “eye perturbation” and it consists
of two distinct steps: First, to eliminate all but the salient
structures in the correlation output, the initial correlation
output is thresholded at 80% of the maximum value. Next,
a unique label is assigned to each structure using connected
component labeling [18]. The location of the maximum
peak within each label is located and returned as a possible
eye location. This process is then repeated for both sides
of the face. Next, geometric normalization is performed
using all of the potential eye coordinates. All of the geo-
metrically normalized images are then compared against
an UMACE based “average” face filter using frequency
based cross correlation. This “average” is the geometric
normalization of all of the faces from the FERET data set
[14]. A UMACE filter was then synthesized from all of the
normalized images. After the cross correlation operation
is performed, only a small region around the center of the
image is searched for a global maximum. The top two left
and right (x, y) eye coordinates corresponding to the image
with the highest similarity are returned as potential eye
coordinates and sent to the facial alignment test.

A.2 Facial alignment
Once the eye perturbation algorithm finishes, the top two
images will be returned as input into the facial alignment
test. The purpose of this test is to eliminate slightly rotated
face images. The first step in the eye perturbation algorithm
will usually return the un-rotated face, but it is possible to
receive a greater correlation score between the rotated im-
age and the average face UMACE filter. The facial image
is preprocessed by the GRAB normalization operator [15].
Next, the face image is split in half along the vertical axis
and the right half is flipped. Normalized cross-correlation
is then performed between the halves. A small window
around the center is searched and the image with the great-
est peak-to-sidelobe ratio (PSR) is then chosen as the image
with the true eye coordinates.
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This face detector uses a variation of RealAdaBoost with
weak classifiers built using trees with modified LBP-like
elements of features. It scans input images in all scales and
positions. To speed-up detection, we use:

• Feature-centric weak classifiers at the initial stage of
the detector

• Estimation of face presence probability in somewhat
bigger windows at the second stage and a deeper scan-
ning of these bigger windows at the last stage

The algorithm analyzes and accepts/rejects samples when
they exceed a predefined threshold of probability to be a
face or non-face.
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Our face detector uses a new feature – the Multi-Block
Modified Census Transform (MBMCT) – that combines the
multi-block idea proposed in [20] and the MCT features
proposed in [19]. The MBMCT features are parametrized
by the top-left coordinate (x, y) and the size w × h of the
rectangular cells in the 3 × 3 neighborhood. This gives a
region of 3w × 3h pixels to compute the 9-bit MBMCT:

MBMCT (x, y, w, h) =
∑
i=0:8

δ(pi ≥ p̄) ∗ 2i, (2)

where δ is the Kronecker delta function, p̄ is the average
pixel intensity in the 3×3 region and pi is the average pixel
intensity in the cell i. The feature is computed in constant
time for any parameterization using the integral image. Var-
ious patterns at multiple scales and aspect ratios can be ob-
tained by varying the parameters w and h.

The MBMCT feature values are non-metric codes and
this restricts the type of weak learner to boost. We use the
multi-branch decision tree (look-up-table) proposed in [20]
as weak learner. This weak learner is parameterized by a
feature index (e.g. dimension in the feature space) and a set
of fixed outputs, one for each distinct feature value. More
formally, the weak learner g is computed for a sample x and
a feature d with:

g(x) = g(x; d,a) = a[u = xd], (3)

where a is a look-up table with 512 entries au (because
there are 512 distinct MCT codes) and d indexes the space
of x, y, w, h possible MBMCT parameterizations. The goal
of the boosting algorithm is then to compute the optimum
feature d and au entries using a training set of face and non-
face images.
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This face detector is based on the Minimum Output Sum
of Squared Error (MOSSE) [21]. It is a correlation based
approach in the frequency domain. MOSSE works by iden-
tifying a point in the image that correlates to a face. To
train we created a Gaussian filter for each image, centered
at a point between the eyes. Then, we took the element-
wise product of the Fast Fourier Transform (FFT) of each
image and its Gaussian filter to give a resulting correlation
surface. The peak of the correlation surface identifies the
targeted face in the image.

A MOSSE filter is constructed such that the output sum
of squared error is minimized. The pairs fi, gi are the train-
ing images and the desired correlation output respectively.
This desired output image gi is synthetically generated such
that the point between the eyes in the training image fi has
the largest value and the rest of pixels have very small val-
ues. More specifically, gi is generated using a 2D Gaussian.
The construction of the filter requires transformation of the
input images and the Gaussian images into the Fourier do-
main in order to take advantage of the simple element-wise
relationship between the input and the output. Let Fi, Gi be
the Fourier transform of the lower case counterparts. The
exact filter Hi is defined as

H∗i =
Gi

Fi
, (4)

where the division is performed element-wise. The exact
filters, like the one defined in Equation 4, are specific to
their corresponding image. In order to find a filter that gen-
eralizes across the dataset, we generate the MOSSE filterH
such that it minimizes the sum of squared error between the
actual output and the desired output of the convolution. The
minimization problem is represented as:

minH∗

∑
i

|Fi �H∗ −Gi|2 , (5)

where Fi and Gi are the input images and the correspond-
ing desired outputs in the Fourier domain. This equation
can be solved to get a closed form solution for the final
filter H . Since the operation involves element-wise mul-
tiplication, each element of the filter H can be optimized
independently. In order to optimize each element of H in-
dependently we can rewrite equation 5 as

Hwv = minHwe

∑
i

|Fiwv �H∗wv −Gi|2 , (6)

where w and v index the elements of H . This function is
real valued, positive, and convex which implies the presence
of a single optima. This optima is obtained by taking the
partial derivative of Hwv w.r.t. H∗wv and setting it to 0. By
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solving for H∗, we obtain a closed form expression for the
MOSSE filter to be

H∗ =

∑
iGi � F ∗i∑
i Fi � F ∗i

(7)

where H∗ is the complex conjugate of the final filter H in
the Fourier domain. A complete derivation of this expres-
sion is in the appendix of the MOSSE paper [21].
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This face detector starts by identifying the possible fa-
cial regions in the input image using the OpenCV imple-
mentation [37] of the Viola-Jones (VJ) object detection al-
gorithm [29]. By itself, the VJ OpenCV implementation
suffers from false positive errors as well as occasional false
negative results when directly applied to the input image.
Jun and Kim [24] proposed the concept of face certainty
maps (FCM) to reduce false positive results. We use FCM
to help reduce the occurrence of non-face detected regions.

The following sections describe the steps of our face de-
tection algorithm, based on the detection module of [26].
E.1 Preprocessing
First, each image’s brightness is adjusted according to a
power law (Gamma) transformation. The images are then
denoised using a median filter. Smaller images are further
denoised with the stationary wavelet transform (SWT) ap-
proach [23]; SWT denoising is not applied to the larger im-
ages because of processing time concerns.

Face detection is then performed at different scales. At
each scale, there are some residual detected rectangular re-
gions. These regions (for all scales) are transformed to a
common reference frame. The overlapped rectangles from
different scales are combined into a single rectangle. A
score that represents the number of combined rectangles is
generated and assigned to each combined rectangle.
E.2 Facial Features Detection
After a facial region is detected, the next step is to locate
some facial features (two eyes and mouth) using the same
OpenCV VJ object detection approach but with a different
cascade XML file. Every facial feature has its own train-
ing XML file acquired from various sources [37, 28]. The
geometric structure of the face (i.e., expected facial feature
locations) is taken into consideration to constrain the search
space. The FCM concept above is again used to remove
false positives and negatives. Each candidate rectangle is

given another score that corresponds to the number of facial
features detected inside.
E.3 Final Decision
Every candidate face is assigned two scores that are com-
bined into a single score, representing the sum of the num-
ber of overlapped rectangles plus the number of facial fea-
tures detected. Candidates with scores above a certain
threshold are considered as faces; if all candidates scores
are below the threshold, the image has no faces.
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As an experiment, this approach combines detectors and ev-
idence accumulation. To ease repeatability, we selected the
Viola Jones [37] general object detection framework via its
implementation in OpenCV [29] but these ideas could eas-
ily be applied with other detection frameworks.

Our hypothesis is that we can get better performance
by introducing different heuristics in the face search.
In this sense, we used the set of detectors available
in the latest OpenCV release for frontal face detection
(frontalface default (FD), frontalface alt (FA) and
frontalface alt2 (FA2)), and for facial feature detec-
tion, we used mcs lefteye, mcs righteye, mcs nose and
mcs mouth [28]).

The evidence accumulation is based on the simultane-
ous face and facial elements detection, or if the face is not
located, in the simultaneous co-occurrence of facial fea-
ture detections. The simultaneous use of different detectors
(face and/or multiple facial features) effectively reduces the
influence of false alarms. These elements include the left
and right eyes, nose, and mouth.

The approach is described algorithmically as follows:
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nofacefound← false
nofacefound← FaceDetectionandFFsInside()
if !nofacefound then
nofacefound← FaceDetectionbyFFs()

end if
if nofacefound then
SelectBestCandidate()

end if
According to the competition, the images have at most

one face per image. A summarized description of each mod-
ule:

• FaceDetectionandFFsInside(): Face detection is per-
formed using FA2, FA and FD classifiers until a face
candidate with more than two facial features is de-
tected. The facial feature detection is applied within
their respective expected Region of Interest (ROI)
where a face container is provided. Each ROI is scaled
up before searching the element. The different ROIs
(format left upper corner and dimensions), consider-
ing that sx and sy are the face container dimensions
(width and height respectively), are:

– Left eye: (0, 0) (sx ∗ 0.6, sy ∗ 0.6).

– Right eye: (sx ∗ 0.4, 0) (sx ∗ 0.6, sy ∗ 0.6).

– Nose: (sx ∗ 0.2, sy ∗ 0.25) (sx ∗ 0.6, sy ∗ 0.6).

– Mouth: (sx ∗ 0.1, sy ∗ 0.4) (sx ∗ 0.8, sy ∗ 0.6).

• FaceDetectionbyFFs(): If there is no face candidate,
facial feature detection is applied in the whole image.
The co-occurrence of at least three geometrically co-
herent facial features provides evidence of a face pres-
ence. The summarized geometric rules are: The mouth
must be below any other facial feature; the nose must
be below both eyes but above the mouth; the centroid
of the left eye must be to the left of any other facial
feature and above the nose and the mouth; the centroid
of the right eye must be to the right of any other facial
feature and above the nose and the mouth; and the sep-
aration distance between two facial features must be
coherent with the element size.

• SelectBestCandidate(): Because no more than one face
is accepted per image, the best candidate is preferred
attending the number of facial features.

The described approach could successfully detect the
faces contained in the training set by considering just two
inner facial features (at least one eye). To ensure our al-
gorithm performed well on the non-face set, the minimum
number of facial features required was fixed to 3. This ap-
proach worked well on all datasets except 200m-50px.
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We used the facial feature detection architecture de-
scribed in [33]. Briefly, the face finder is a Viola Jones
style cascaded detector [37]. The features used were Haar
wavelets that were variance-normalized. The classifier was
GentleBoost [34] with cascade thresholds set by the Wald-
Boost algorithm [36].

No FDHD images were used in training. Instead, a
custom combined dataset of about 10,000 faces was used.
The sources included publicly available databases such as
FDDB, GEMEP-FERA, and GENKI-SZSL [35, 31, 32]
along with custom sources such as TV shows, movies, and
movie trailers.
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