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Abstract

This report is on the Lehigh/ColumbiaMURI con-
tract. While the original focus was on sen-
sors for manufacturing, the natural evolution of
our basic researchhas led us to more general
problemsin more generic settings. As a multi-
faculty multi-disciplinaryprojectmuchof the work
is naturally done in smaller subgroup. The ma-
jor resultsover the past year were on 3D model-
ing/sensorplanning,omni-directionalimaging,and
reflectance/image/noisemodeling.Thereweremore
focusedresultsin deformablemodels,featuredetec-
tion, appearancematching,andvideosegmentation.
Notethatsomeprojects(e.g.,theoutdoor3D model
building) bring togethermany of the above topics.
This reportprovidesshortsummariesof our signif-
icant contributions with citationsto relatedpapers.
Lengthof presentationhereindoesnot reflect level
of effort nor our view of its significance– many of
the most importantareashave paperselsewherein
theseproceedings.

1 AutomatedSiteModeling
3-D modelsof outdoorenvironments,known assite
models,areusedin many differentapplicationsthat
includecity planning,urbandesign,fire andpolice
planning,surveillanceandvirtual reality modeling.
Creatingsite modelsfor urbansceneswhich con-
tain large structures(i.e., buildings) thatencompass
a wide rangeof geometricshapesandcontainhigh
occlusionareasis quitechallenging.

Thesemodels are typically createdby hand in a
painstakinganderror proneprocess.We arebuild-
ing a systemto automatethis procedurethat ex-
tendsour previous work in 3-D model acquisition

�
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Figure1: Mobile robotfor automatedsitemodeling.

usingrangedata[Reed-1998,ReedandAllen-1998,
Reedet al.-1997, Allen and Yang-1998]. This is
an incrementalvolumetricmethodthat canacquire
andmodelmultiple objectsin a sceneandcorrectly
merge models from different views of the scene.
Modelsarebuilt from successive sensingoperations
that aremergedwith the currentmodelbeingbuilt,
called the compositemodel. The merging is per-
formedusingaregularizedsetintersectionoperation.
Thesepartial,compositemodelscanserveasinputto
oursensorplanningsystemthatcanreducethenum-
ber of views neededto fully acquirea scene.Plan-
ningeachsensingoperationreducesthedatasetsizes
andacquisitiontime for a complex model.Most ex-
isting systemsdo not useplanning,but rely on hu-
maninteractionor theneedfor largeoverlapsin im-
agesto assureadequatecoverageof thescene.Our
plannercanincorporatedifferentconstraintsinclud-
ing visibility, field-of-view andsensorplacementto
find the next viewing position that will reducethe
model’s uncertainty. Thesystemhasbeentestedon



Figure2: Recovered3-D modelsof a blocksworld
city. All 3 objectswererecoveredat once. Sensor
planningalgorithmswere usedto reducethe num-
berof rangescansandfind unoccludedviewing po-
sitions.

indoor modelsandwe arenow extendingit to out-
doorsceneswith multipleobjects.

At eachstepof theprocess,a partialsolid modelof
the sceneis created. The facesof this model con-
sistof correctlyimagedfacesandfacesthatareoc-
clusionartifacts. We can label thesefacesas “im-
aged”or “unimaged”andpropagate/updatethesela-
belsasnew imagesareintegratedinto thecomposite
model. The faceslabeled“unimaged”are thenthe
focusof thesensorplanningsystemwhichwill try to
positionthesensorto allow these“unimaged”faces
to be scanned.The set intersectionoperationmust
be ableto correctlypropagatethe surface-typetags
fromsurfacesin themodelsthroughto thecomposite
model.Retainingthesetagsaftermergingoperations
allows viewpoint planningfor unimagedsurfacesto
proceed.

Figure2 is a recovered3-D solid modelof a simu-
latedcity scenemadeupof 3 toy buildingsplacedon
our laserscannerturntable.Four initial views were
takenat

�����
intervals,andthismergedpartialmodel

wasusedby theview plannerto choosethenext view
to reducethemodel’s uncertainty. This processof a
partial modeldriving the plannerfor the next view
wasuseduntil 8 moreimagesweretaken, reducing
the model’s uncertaintyto a small threshold. The
modelis accurateandthemethodcanrecover struc-
turethatis occluded.

For automatingthis task outdoors,we are equip-
ping a mobile vehiclewith sensorsand algorithms
to accomplishthis task. A pictureof the vehicle is
shown in figure1. Theequipmentconsistsof anRWI
ATRV mobile robot base,a spot rangescanner(80
meterrangespotscannerwith 2-DOFscanningmir-
rors for acquiringa whole rangeimage,not shown
in image),centimeteraccuracy on-boardGPS,color
camerasfor obtainingphotometryof thescene,and
mobilewirelesscommunicationsfor transmissionof
dataandhigh level controlfunctions.

Theplanningalgorithmscanbeusedto navigatethe
mobilerobotscannersystemto a positionfor a new
scanthat will reducethe uncertaintyin the scene.
Given a partial modelof the scene,we cantag the
surfacesacquiredby the scannerin sucha way as
to know whatregionsareimagedandwhich areoc-
clusion surfaces. We can thenusetheseocclusion
surfacesto find unobstructedviewpoints. Oncewe
computetheseviewpoints, we can then command
themobilesystemto navigateinsidea visibility vol-
umeandtake a new scan,thuscompletinga partial
modeland“filling in the blanks” to build the com-
pletemodel.Detailscanbefoundin thisproceedings
[Allen et al.-1998].

2 Interacti veSensorPlanning

Theautomatedsitemodelingsystemwill bemerging
therangedatawith 2-D imageryto enhancethemod-
els. This alsorequiresa view planningcomponent.
In clutteredandcomplex environmentssuchasurban
scenes,it canbevery difficult to determinewherea
camerashouldbeplacedto view multipleobjectsand
regionsof interest.We have built aninteractive sen-
sor planningsystem[Stamosand Allen-1998] that
canbe usedto selectviewpointssubjectto camera
visibility, field of view and task constraints. This
work buildsuponourearlierwork in sensorplanning
[Abrams-1997]. Application areasfor this method
includesurveillanceplanning,safetymonitoring,ar-
chitecturalsite designplanning,andautomatedsite
modeling. Givena descriptionof thesensor’s char-
acteristics,theobjectsin the3-D scene,andthetar-
getsto be viewed, our algorithmscomputethe set
of admissibleview pointsthatsatisfytheconstraints.
The systemfirst builds topologically correct solid
modelsof the scenefrom a variety of datasources.
Viewing targetsarethenselected,andvisibility vol-
umesandfield of view conesarecomputedandin-
tersectedto createviewing volumeswherecameras
can be placed. The usercan interactively manipu-
late the sceneandselectmultiple target featuresto
beviewedby acamera.Theusercanalsoselectcan-
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Figure 3: Planningcamerapositions in an urban
scene.Thetargetcanbeany facein thescene(multi-
ple targetscanalsobeused).TheVisibility Volumes
(transparentpolyhedralvolumes),theField of View
Conesfor the direction 
�� (transparentcones)and
theCandidateVolumes(intersectionof thevisibility
volumeswith thefieldof view cones)for theviewing
direction
 � (left partialcones)andfor thedirections

�
 (right partialcone)aredisplayed.

didateviewpointswithin this volume to synthesize
viewsandverify thecorrectnessof theplanningsys-
tem. The interactive systemallows us to generate,
loadandmanipulatedifferenttypesof scenesandin-
teractively selectthetargetfeaturesthatmustbevis-
ible by a camera.Theresultsof thesensorplanning
experimentsaredisplayedas3-D volumesof view-
points that encodethe constraints.Virtual cameras
placedin thosevolumesprovide a meansof synthe-
sizingviews in real-timeandevaluatingviewpoints.
Thesystemcanalsobeusedto provideanimated“fly
throughs”of thescene.

Hereis abrief exampleof how thesystemworksfor
planningcamerapositionsfor surveillanceof mul-
tiple targetsin an urbanscene.As input, the plan-
nerneedsmodelsof buildingsthatarewatertightB-
Reps(i.e. no danglingfaces).In mostcases,exist-
ing urban/citymodelsaregraphicsmodelsthathave
noneedto betopologicallyconsistentandgeometri-
cally correct,since2-D viewing is themainapplica-
tion. Thosemodelsarenot guaranteedto be com-
plete sincethey lack topological information. We
have built a tool that cantake an incompletemodel
andrecover the adjacency informationbetweenthe
facesto build a correct solid model. Once these
solid modelsarebuilt, targetscan thenbe selected
in thesceneanda setof viewing volumescomputed
thatdeterminevisibility andfield-of-view for view-
ing multiple targetsin an urbanscene.Intersecting
thesevolumesfor eachviewing constraintresultsin
the locusof viewpointswhich areguaranteedto be
occlusion-freeandableto seetargetswithin thefield

of view. Figure3 shows a city modelthatwasgen-
eratedfrom an incompletegraphicsmodelof Ross-
lyn VA. andwastranslatedby thesystemto a valid
solid modelwhich theplannercanuse.Overlaidon
thecity modelaretheviewing volumesgeneratedfor
differentviewpointson a selectedtarget facein the
scene.The objectmodelsandtargetscanbe inter-
actively manipulatedwhile camerapositionsandpa-
rametersareselectedto generatesynthesizedimages
of the targets that encodethe viewing constraints.
We are currently extending this systemto include
resolutionconstraints.Detailscanbefoundin these
proceedings[Allen et al.-1998].

3 A Theory of Catadioptric Image
Formation

Many applicationsof computationalvision requirea
large field of view. Examplesincludesurveillance,
teleconferencing,and model acquisitionfor virtual
reality. A numberof otherapplications,suchasego-
motion estimationand tracking, do not strictly re-
quirea largefield of view, but their robustnessgen-
erally increasesasthefield of view getswider. Al-
thoughconventionalimagingsystemstypically have
very limited fields of view, usingthemin conjunc-
tion with a mirror can yield a wide field of view.
This approachof usingmirrors in combinationwith
conventionalimagingsystemsis usuallyreferredto
as catadioptric image formation. A large num-
ber of designsfor wide field of view catadioptric
imaging systemshave beenproposedin the litera-
ture. See, for example, [Rees-1970], [Charleset
al.-1987], [Nayar-1988], [Yagi and Kawato-1990],
[Hong-1991], [Goshtasbyand Gruver-1993], [Ya-
mazawa et al.-1993], [Bogner-1995] , [Nalwa-1996],
and[Nayar-1997].

As notedin [Rees-1970], [Yamazawa et al.-1995],
[Nalwa-1996], and[Nayar-1997], it is highly desir-
able that an imagingsystem,catadioptricor other-
wise, have a single effective viewpoint (centerof
projection).Thereasona singleeffective viewpoint
is sodesirableis thatit is botha necessaryandsuffi-
cient condition for the generationof geometrically
correct perspective imagesfrom the capturedim-
age(s). Subsequently, theseunwarpedimagescan
beprocessedusingthevastarrayof techniquesthat
assumeperspective projection.Moreover, if the im-
agesarepresentedto ahuman,asin [PeriandNayar-
1997], they needto beperspective imagesin orderto
appearundistorted.

Variousdifferentmirror shapeshave beenproposed
for catadioptricsensors,including cones,spheres,
hyperboloids,andparaboloids.Someof thesemirror



shapesleadto a singleeffective viewpoint, whereas
othersdo not. In [Baker andNayar-1998b], we de-
rivedthecompleteclassof catadioptricsensorswith
a singleeffective viewpoint that canbe constructed
usinga singleconventionalcamera.Weshowedthat
thereis a 2-parameterfamily of mirror shapesthat
canbeused,thatbeingtheclassof sweptconicsec-
tions.Within thissetof solutions,severalproveto be
degenerateandhenceareimpractical,whereasoth-
ersdo leadto practicalsensors.We evaluatedall of
thecatadioptricsensorsmentionedabove in light of
this resultandshowed which designshave a single
viewpointandwhichdonot.

An importantpropertyof any sensorthat imagesa
largefield of view is its resolution.Theresolutionof
a catadioptricsensoris not, in general,the sameas
that of the sensor(s)usedto constructit. In [Baker
andNayar-1998b], we alsoderived the relationship
betweenthe resolutionof a conventional imaging
systemandthatof aderivedcatadioptricsensor.

Another optical propertythat is affectedin a cata-
dioptric sensoris focusing. It is well known that
a curved mirror increasesimage blur [Hecht and
Zajac-1974]. In [Baker andNayar-1998b], we ana-
lyzedthiseffect for catadioptricsensors.Weshowed
how a focus look-up table can be computedfor a
catadioptricsensor. Theresultsshow that the focus
settingof acatadioptricsensorusingacurvedmirror
maybesubstantiallydifferentfrom thatneededin a
conventionalsensor. Moreover, even for a sceneof
constantdepth,widely different focussettingsmay
beneededfor differentpartsin thescene.

4 RemoteReality

The full viewing natureof omni-directionalimage
leadquitenaturallyto developwhatwe call remote-
reality. Virtual reality putstheuserin an immersive
“virtual” world. In remotereality thereis nothing
virtual aboutit; remotereality is animmersivevideo
from a remotelocation. We have developedsoft-
warethatallows a user, who wearsa (COTS) head-
mounted-displaywith head-tracker, to look around
within theomni-directionalvideostream.For more
detailssee[Boult-1998c,Boult-1998b,Boult-1998a,
Boult etal.-1998] or ourwebsite.

To be immersive themotionandvideomustbenat-
ural, which means30fpsvideo, fastreaction(15fps
or better)to headmovementsanda smoothlymov-
ing viewpoint. Thelastpartof this is inherentin the
ParaCameradesign,thereis only oneviewpoint. The
othertwo areachieved, at 320x240resolution,on a
233Mhzprocessorwith inexpensive COTSparts.

Figure4: Omni-directionalcameraon RemoteCon-
trol CarandRemoteRealityDriver.

Whenusedwith tapedvideo, remotereality hasdi-
rectapplicationin training,missionrehearsal,route
planningandcomplex plantmanagement.With live
videotransmissionit canbeusedin vehicleoperation
andin urbanmaneuvers(e.g.,wehave demonstrated
mountingaparacameraona remotelycontrolledve-
hicleanddriving it usingtheremote-realitysystem).
In anurbanaction,thevehiclecouldbedrivenfrom
a remotelocationwhile a small unit follows behind
thevehicle.Usinga wearableremotereality system
the soldiercould independentlyandsimultaneously
look aroundthe vehicle’s locationwhile remaining
radio-silent.It alsoappliesto remoteunderwateror
airbornevehicleswherea pilot coulduseremotere-
ality to fly the vehiclewhile otherslook aroundfor
pointsof interest. The 3D natureof thesevehicles
makesit evenmoreimportantthatthethepilotshave
instantresponseasthey turn their head.At thesame
timetheirnaturelimits transmissionbandwidth;with
remotereality a singlevideo streamwould support
boththepilot andmultiplespottersthatcouldin any
direction,includingdown ravinesor sidestreets,for
potentialthreats/targets

While the para-camerais now commerciallyavail-
able,wearestill workingonnew cameradesigns,es-
peciallyfor theremote-realityapplicationsdescribed
above. At Columbia,they areaddressingboth size
reductionandenvironmentalissues,see[Nayarand
Boult-1998]. At Lehigh,mostof thenew designsare
addressingphysicaland environmentalconstraints,
andneedto mix bothopticalandmechanicalissues
to maintainquality. Thesecamerasdevelopedin-
clude two different versionsof under-water omni-
directionalcameras,two camerasdesignedfor less
obviousvehiclesmounting,andtwoenvironmentally
stablesystems(usedin the fall VSAM demo). Fig-
ure 5 shows two of thesesystems. We have also
developeda dual-modesystemsthat usesa single
camerawhichcanbeusedin eitheromni-directional



modeor in a traditionalpan-tilt-zoommode.

Figure5: Somecustomomni-directionalcamerasfor
vehicleandunderwateruse.

5 Small Vision Systems
While the COTS laptopmarket hasmadeadvance-
mentswith PCMCIA videocardsandsomeinternal
captureboards,the responseto market pressurehas
resultedin systemsthat cannotcapture/processfull
resolutionvideo. They provide zoomed-portvideo,
wherefull resolutionvideois overlaidon thescreen,
singleframecapture(at full resolution)and320x240
processingacrossthebus.

With theresolutiondemandsof theomni-directional
imagesystems,it wasnaturalfor us to convert our
past efforts on LVS, the laptop-vision-system, to
smaller, more robust and/or compactsystemsca-
pableof full resolutionprocessing.This hasbeen
mostly a systemsengineeringissueworking with
commercial-off-the-shelfparts,integratingthemand
porting our software. We have beenexploring dif-
ferentpoints in the price/power/speedspectrumfor
potentialapplicationsrangingfrom securityto wear-
ableremotereality. Thecurrentsystemsinclude:
� a commerciallyPower-PC403-basedsystemin

a 10cm x 10cm x 25cm packageproviding
640x480 gray-scaleimaging, 16MB memory
and10MB networking.� a low-power (10watts)PentiumbasedPC104+
systembasedfor wearableoperationwith di-
mensions14cmx 14cm x 7cm. (Total system
draw � 20watts).� a low cost commercial strong-ARM system,
22cmx 15cmx 4cmwith � 10 watt total disk-
lessoperation.� twocompact-PCIPentiumbasedsystems,onein
aNEMA-4 ruggedizedhousing.

This is an ever changingarenawith a myriad of
tradeoffs to address.Peopleinterestedcanfind more
detail,includingsystemphotos,onourwebsite.

6 Panoramic Pyramids

Becausewide-fieldof view imagespacka largefield
of view into a single image, the resolutionof that
imageis importantfor trackingandsecurityappli-
cations.Thusmany researchersarelooking at mov-
ing to higherresolutioncameras.As imagingtech-
nology advanceshigher resolutioncamerasarebe-
comingcommonplace,(e.g.,HDTV Cameraspro-
duceapproximately2Kx1K 30bit pixels at 30fps).
At lower framerates,2Kx2K and4K x4K cameras
arenow commonlyavailable. At theseframesizes,
thedataratesbecomephenomenal.An HDTV cam-
eraproducesover1.8Gbits(225MBytes)persecond.
At theseratesjust transferringthedatainto thema-
chineis aseriousissue.

Multi-resolution techniques,(a.k.a. Pyramidalgo-
rithms) have beenusedin a wide rangeof vision
applicationsto reducecomputationaldemands,and
address,inherentscaleissues.Unfortunately, build-
ing aproperpyramidis, in andof itself, apotentially
costlyoperationrequiringapre-filteringconvolution
beforedown sampling. Presuminga 7x7 separable
convolutionbeforedown sampling,weneed14mul-
tipliesand13additionsfor eachof 3x640x480pixels
at 30fpsfor approximately750 MOPSto make the
first layer of the pyramid, with 1/4 of that for each
additionallayer, thetotal is about1000MIPS just to
form the pyramid. While this canbe donewith to-
day’s processors,it’s quitetaxingandhasleadother
DARPA IU projectsto build specialpurposehard-
ware. The computationaldemandbecomesmorea
moresignificantissuewhenwe considerHDTV or
larger images,for which thelargedataratesdemand
“intelligent” processing.Building a good pyramid
would require12,000MIPS for HDTV and70,000
MIPS for 4k x 4k 30fps imagery. None of todays
specializedhardware,eventhemostadvancedDSPs,
cancurrentlybuild suchpyramidsin real-time.

While coarse-to-fineprocessingis importantandde-
sirable, just the building of the pyramid to enable
coarse-to-fineprocessingwould requiremorecom-
puting power thanavailable in todaysworkstations
letalonethatavailablein lowerpowerunitswemight
runfrombatteries.It mightseemthathigh-resolution
high-speedimagingis still well beyondus.However,
with somecatadioptrichelp,it is almostwithin reach
todaywith panoramicpyramids.

Recall that in our omni-directional camera, a
parabolicmirror is imagedby an orthographiclens
to producethe image. The combinationof ortho-
graphicprojectionandtheparabolicmirror provides
a singleviewpoint,at thefocusof theparabolicsur-



Figure6: A threelayerphysicalpanoramicpyramid
imagedfrom sideto show mirror stack.

face. For any parabolicmirror size, the resulting
paraimagecontainsthe full hemisphericview. The
size of the omni-directionalimagedependson the
imagemagnificationandthesizeof themirror. The
panoramicpyramid, proposedby T. Boult atLehigh,
usesasetof parabolicmirrorsstackedoneontopthe
other. Eachmirror producesa paraimageandcanbe
unwarppedto provide a perspective view in any di-
rectionwithin a panoramicslice. In the pyramid in
figure 6, the mirrorswerechosenso that the gener-
atedomni-directionalimageswere1/2theresolution
of the next finer resolution. Mirrors can,however,
provide any resolutionreductiondesired.e.g. 4-to-
1, 10-to-1or even 6.4-to-1 (sayto reducea 4kx3k
imageto normal640x480video).

The resulting panoramic pyramid system allows
course-to-fineprocessingin the truestsense:after
processingthepixelsin thelower resolutionregions,
only thehigherresolutionpixelsin theregionsof in-
terestneedbetransferredfromtheimagingarray. We
do not even needto transfer, let aloneprocess,the
pixelsin low interestareas.

While we have built a panoramicpyramid proto-
type, therearenumerousresearchissuesstill to be
addressedespeciallyaspectsof noise,handlingthe
increaseddemandson depth-of-field,systemcali-
brationandgeneralreal-timesoftwaredevelopment.
Initial prototypingwill useexisting high-resolution
camerasandPC.We will alsobepursuingdirectin-
tegrationof highresolutionimagersandDSP’s to al-
low full programmabilityand “on cameraprocess-
ing”.

7 ImageFusion
In recentyears,imagefusion approachesbasedon
multiscaledecomposition(MSD) began to emerge
and receive increasedattention. In our research,

Figure 7: A panoramicpyramid image of size
480x480.The“edges”of themirrorsonly distort1
pixel. (Becauseof alignmenterrorsin themounting
thesmallestmirror is displacedslightly downward.)

a generic image fusion framework (seeFigure 1)
basedonmultiscaledecomposition(MSD) is studied
[ZhangandR. S. Blum-, ZhangandR. S. Blum-97,
ZhangandR. S. Blum-1997]. This framework pro-
videsfreedomto choosedifferentMSD methodsand
differentfusionrules.It cannotonly describetheex-
isting imagefusion schemesdevelopedin previous
research,but alsointroducessomenew approaches.
Thesenew approacheshave beenshown to outper-
form previous approaches.Our studywas focused
onhow to usetheMSD dataof thesourceimagesto
producea fusedMSD representationwhich should
bemoreinformative to theobserver (humanor com-
puter).Studiesof thistypehavebeenlacking.Exper-
imentsshow thatregion-basedfusionandmultiscale
MSD coefficientsgrouping,two new ideaswe pro-
pose,canalmostalways improve the imagefusion
performancefor any of the MSD methodswe con-
sidered.Somenaturalextensionsto theMSD-based
imagefusion researchare also suggestedbasedon
this framework.

8 Blind ImageQuality Estimation
Somenew techniquesare proposedfor estimating
thequalityof anoisyimageof anaturalscene[Zhang
andR. S. Blum-1998]. In our techniques,a mixture
model is usedin conjugationwith the expectation-
maximization(EM) algorithmto model imagesob-
tainedby edgedetectionof theimagesunderconsid-
eration. This approachyields an accuraterepresen-
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Figure8: Thegenericframework of imagefusionschemes

tation which is useful in the processof fusing sev-
eralimagesto obtainahigherquality image.Quality
measuresof this typeareneededfor fusion,but they
have not received muchattentionto date. Analyti-
cal justificationsaregivenwhich explain why these
techniqueswork. Experimentalresultsindicatethat
the techniqueswork well in practice. Thesetech-
niquesneedonly the imagesto beevaluatedanddo
not usedetailedinformationaboutthe formationof
theimage.Thefocusis on thecasewheretheimage
is only corruptedby additive Gaussiannoise,which
is independentfrom pixel to pixel, but somecases
with signal-dependentnoiseor blurringarealsocon-
sidered. Somepracticalexamplesare investigated
in our researchwhich illustrate the applicability of
thesetechniques.

9 Quantitati veEvaluation of
Super-Resolution

No matterwhattheresolutionof imagingsensorswe
build, there is always a desireto get a little more
resolutionfrom thoseimages.In thefirst two years
of this MURI project,we addressedthis continuing
needbydevelopinganddemonstratingefficienttech-
niquesproducingsuper-resolutionimages.Thetech-
niquesdiffered from previous work by concentrat-
ing more on earlier stagesin particularthe quality
of imagewarping inherentin suchtechniques.We
developeda new techniquethat integrateda model
intra-pixel blurring into the process.Over the past
year, weundertookwhatwebelieve is thefirst quan-
titative “task-based”evaluationof asuper-resolution
technique,[Chiang-1998]. The quantitative analy-
sis had two components.The first usedimagese-
quencesof text andtheevaluationusedacommercial
OCRsystemwith characterrecognitionratesasthe
metric. The resultsshowed that our new technique
wassignificantlybetterthaninterpolationtechniques
and better than the existing super-resolution tech-

niquesagainstwhich we testedit. The initial qual-
itative evaluation comparedour techniqueto the
bestknown state-of-theart ([Irani and Peleg-1991,
Irani and Peleg-1993]) and comparedmultiple in-
stancesof our approach(using both bilinear and
our new warping techniques,with and without de-
blurring). Only the most successfulwere consid-
ered for quantitative evaluation. The first part of
the quantitative evaluation used an OCR system
as a back-endand “recognition ratesas a metric”.
For “video-conferencing” qualitycamerastheexper-
imentsshowed resultsrangingfrom 63% recogni-
tion (for uncorrectedbilinear interpolation)to 97%
raw recognitionfor new super-resolutiontechniques.
With bettercamerasandmorepixels per character,
improvementis lesssignificant,althoughmeasurable
(97%versus99%).

Text recognition, however, is a somewhat artifi-
cial problemwith almostbinary data. Our second
quantitative evaluationwas basedon object recog-
nition/poseestimation. The experimentused the
SLAM system[Neneet al.-1994] which wasdevel-
opedin earlieryearsof this MURI. SLAM is anap-
pearancebasedrecognitionsystemthatusesa para-
metriceigenspace.For theexperiments,SLAM was
trainedusing a 50mm lens on 36 views of 12 ob-
jects. For testing,sequencesof 8 to 32 imageswere
obtainedusing a 12 mm lens and different tech-
niqueswere usedto scalethe imagesbeforeusing
themasinput to SLAM. Differentposesof thesame
objectprovide minimally different “images” where
thedetailaddedby super-resolutionmatters[Chiang-
1998]. Theresultsshow thateven in this more“vi-
sion” orientedapplication,super-resolutionhelpsin
mostcases.In thecaseswheresuper-resolutiondid
not outperformstandardcubic-convolution interpo-
lation, it was also the casethat both methodsdid
betterif we blurred the image. (We believe this is
becausethe images/algorithmswere dominatedby



aliasingartifactswhicharereducedwith blurring).

10 Reflectanceand Texture of RealWorld
Surfaces

Characterizingtheappearanceof real-world surfaces
is importantfor many computervision algorithms.
The appearanceof any surfaceis a function of the
scaleat which it is observed. Whenthe character-
istic variationsof the surfacearesubpixel, all local
imagepixelshave thesameintensitydeterminedby
thesurfacereflectance. Thevariationof reflectance
with viewing andillumination directionis captured
by the BRDF (bidirectional reflectancedistribution
function). If the characteristicsurfaceundulations
areinsteadprojectedontoseveralimagepixels,there
is a local variationof pixel intensity, referredto as
imagetexture. The dependency of textureon view-
ing and illumination directionsis describedby the
BTF (bidirectionaltexture function).

We have measuredtheBRDF of over 60 samplesof
rough, real-world surfaces. Although BRDF mod-
els have beenwidely discussedand usedin vision
(see[Nayaret al.-1991],[TagareandDeFigueiredo-
1993],[Wolff-1994],[Koenderinket al.-1996],[Oren
and Nayar-1995]) the BRDFs of a large and di-
versecollection of real-world surfaceshave never
before been obtained. Our measurementscom-
prise a comprehensive BRDF database(the first
of its kind) that is now publicly available at
www.cs.columbia.edu/CAVE/curet.

Exactlyhow well theBRDFsof real-world surfaces
fit existing modelshasremainedunknown as each
model is typically verified using a small number
(2 to 6) of surfaces. Our large databaseallowed
us to evaluatethe performanceof known models.
Specifically, themeasurementsarefit to two existing
analytical representations:the Oren-Nayarmodel
[Oren and Nayar-1995] for surfaceswith isotropic
roughnessand the Koenderinket al. decomposi-
tion [Koenderinket al.-1996] for both anisotropic
and isotropic surfaces. Our fitting resultsform a
conciseBRDF parameterdatabasethat is alsopub-
licly availableat www.cs.columbia.edu/CAVE/curet.
TheseBRDF parameterscan be directly usedfor
both imageanalysisand imagesynthesis. In addi-
tion, theBRDF measurementscanbeusedto evalu-
ateotherexistingmodels[Nayaretal.-1991],[Tagare
andDeFigueiredo-1993] ,[Wolff-1994] aswell asfu-
turemodels.

While obtaining BRDF measurements,imagesof
eachreal-world samplewere recorded. Theseim-
agesprove valuablesince they comprisea texture

database,or a BTF database,with over 12,000im-
ages(61sampleswith 205imagespersample).Cur-
rent literature deals almost exclusively with tex-
turesdue to albedoand color variationson planar
surfaces(see[Wang and Healey-1996],[Chatterjee-
1993],[Kashyap-1984]). In contrast,the texturedue
to surfaceroughnesshascomplex dependencieson
viewing and illumination directions. Thesedepen-
denciescannot be studied using existing texture
databasesthatincludefew images(oftenasingleim-
age)of eachsample(for instance,the widely used
the Brodatzdatabase).Our texture databasecovers
a diversecollectionof roughsurfacesandcaptures
thevariationof imagetexturewith changingillumi-
nationandviewing directions.This databaseis also
availableatwww.cs.columbia.edu/CAVE/curet.

11 Histogram Model for 3D Textures
The term image texture, or simply texture, usu-
ally refersto thedigital imageof a texturedsurface.
In order to understandimagetexture, the natureof
the surfacetexture must be specified. Image tex-
ture can arisenot only from surface albedovaria-
tions(2D texture)but alsofrom surfaceheightvari-
ations(3D texture).Thedistinctionbetween3D tex-
tureand2D textureis exploredin recentwork [Dana
etal.-1996],[Danaetal.-1997],[vanGinnekenetal.-
],[Koenderinkand van Doorn-1996],[Stavridi and
Koenderink-1997] ,[LeungandMalik-1997]. While
thereis alargebodyof work dealingwith algorithms
for theanalysisandsynthesisof 2D texture,compa-
rablework for 3D texture is quitesparse.Sincethe
appearanceof 3D texture dependson the illumina-
tion andviewing directionin a complicatedmanner,
it is usefulto referto imagetextureasabidirectional
texture function.

Modelingandsynthesizingthis bidirectionaltexture
is key to achieving robust texture recognitionand
segmentationaswell asphotorealistictexturerender-
ing. A fundamentalrepresentationof texture is the
histogramof pixel intensities. For 3D texture, just
asimagetexture is bidirectional,the histogramis a
bidirectionalhistogram. Changesin thehistogramof
3D texturewith illumination andviewing directions
areindicative of the surfacestructure.The work of
[van Ginneken et al.-] alsoaddresseshistogramsof
3D textureby investigatingthephysicalmechanisms
underlyingbidirectionalhistogramsfrom a largeva-
riety of surfacesandby usingstatisticalsimulations
to generatehistogramsof Gaussianroughsurfaces.

We have developedananalyticalmodelof thebidi-
rectional histogram of image texture [Dana and
Nayar-1998]. For arbitrary surfaces, developing
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Figure9: Illustration of 3D texture synthesisusingtexture-morphingandthe histogrammodel. From left to right
the imagesare1) plasterfrom a nearfrontal view, 2) a simulatedobliqueview obtainedby applyingstandardtexture-
mappingto the frontal view image,3) the actualobliqueview of the plastersample,4) a simulatedobliqueview by
applyingtexture-morphingto thefrontalview image.Thesimulatedview obtainedby texture-morphingis significantly
betterthantexture-mapping.

suchamodelis extremelydifficult. So,for tractabil-
ity, we assumedtheimagedsurfacehasanisotropic
random-slopeprofile and constant-albedoLamber-
tian reflectance.This modelhasbeenshown to bea
goodapproximationfor avarietyof naturalandman-
madesurfacesfoundin ordinaryscenes.Our model
is basedon a geometric/photometricanalysisof the
interactionof light with the surface. We show the
accuracy of themodelby fitting to thehistogramsof
real 3D texturesfrom theColumbia-Utrechttexture
database[Danaetal.-1997].

Themodelcanbeusedin applicationsfor bothcom-
puter vision and computergraphics. The param-
eters obtainedfrom the model fits are roughness
measureswhich canbe usedin texture recognition
schemes.In addition,themodelhaspotentialappli-
cationin estimatingillumination directionin scenes
wheresurfacesof known tilt androughnessarevis-
ible. We demonstratethe usefulnessof our model
by employing it in a novel 3D texturesynthesispro-
cedurecalled texture-morphing. We show that re-
sultsobtainedusingtexture-morphingaresuperiorto
thoseobtainedwith standardtechniquesof texture-
mapping(seeFigure9).

11.1 Training and Evaluating Deformable
Models

A deformablemodel(“snake,” in 2D) is aparameter-
izedshapethat is adjustedto minimizeanobjective
functionof it andanimage,in orderto fit thebound-
ary of a depictedobject. This work concernsthe
learning,from groundtruth, of the objective func-

tion thatguidesthemodel.It is beingappliedto two
very different imagemodalities,cardiacultrasound
andabdominalCT images;the work is expectedto
readily transferto otherdomains,suchasimageor
rangedataof industrialparts. In contrastto the as-
sumptionsof existing methods,the initial domains
arerealisticin thatthedesiredobjectsarenotneces-
sarily theoneswith thesharpestboundaryedges.

Sinceone must choosethe featuresto be learned,
as well as the parameterizedfunction that is fit to
their distribution, the researchalsoconcentrateson
evaluatingthe performanceof a resultingobjective
function [Fensterand Kender.-1998]. The method
developedis equallyapplicableto moretypical de-
formablemodels,whichhavenotbeentrained;it can
andhasbeenusedto evaluatesuchmodels.

For the learningpart of the work, we have derived
objective functions from observed distributions of
image intensity and gradient strengthat different
scales(blurs)for pointson theshapeboundary. Sev-
eral relatedfunction familiesweretestedfor fitting
the distributions, including joint Gaussiansin in-
tensityandgradient,identicallydistributedat every
boundarypoint; separatedistributions for different
“sectors”of the boundary;anda 2D Gaussianwith
a covarianceparameter. Each was testedat three
scales.

For the evaluation part of the work, we have
testedtheobjective functions’statisticalbehavior for
shapeswith varyingdegreesof closenessto thecor-
rectone,where“close” is measuredby chamfer(av-



erage)distance,and“varyingdegrees”aregivenby
a perturbationmodel(Figure10). We have devised
novel measuresof performance,which include the
incidenceof “f alse positives”, that is, the number
of similar but incorrectshapesscoringbetter than
groundtruth,andthecorrelationcoefficientof shape
dissimilaritywith objective functionvalue.

Experimentationhasshown that the simplestdistri-
bution model, the joint Gaussians,yielded a vast
improvementover thetraditionalobjective function,
which maximizesgradientstrength. Sectoringthe
contourinto separatelylearnedsegmentsprovideda
further improvementfor abdominalCTs. Twice as
coarsea scalewasfound to beoptimal in theultra-
sounddomainasin theCT domain.Theseandother
resultsare presentedin an accompanying paperin
thisvolume.

12 Optimal Weighting Functionsfor
Feature Detection

More often thannot, existing featuredetectorsgive
equal importanceto eachof the pixels. However,
somepixels may well provide more reliable infor-
mation thanothers. For instance,when estimating
the parametersof a corner, it seemsintuitively rea-
sonablethat the center-most pixels provide almost
noreliableinformation,whereasthepixelsonthepe-
ripheryarevital for highperformance.In [Bakerand
Nayar-1998a], we studiedhow to weight thecontri-
butions of the imagedatato maximizethe perfor-
manceof a featuredetector.

Modelmatchingfeaturedetectors,suchas[Hueckel-
1971], [Nalwa andBinford-1986], [Rohr-1992], and
[Bakeretal.-1998], areoneof thepredominanttypes
of featuredetectors.Suchdetectorsassumeanideal
parametricmodelof the featurein question.A fea-
tureis detectedby amodelmatchingdetectorif there
exist parametervaluessuchthattheidealfeaturein-
stanceandthe imagedataare“sufficiently similar.”
To measurethedegreeof similarity, thedetectorre-
quiresa matchingfunction. In [Baker and Nayar-
1998a], the problemof decidinghow to weight the
contributionsof the pixel intensitydatawasformu-
lated as one of selectingthe matchingfunction to
maximizedetectorperformance.

The selectionof the matchingfunction for a fea-
turedetectorhadnever beforebeenstudiedin a sys-
tematicmanner. In fact, mostmodelmatchingde-
tectorssimply usethe Euclidean FHG norm without
even mentioningthe decision. Examplesinclude
[O’Gorman-1978], [Hummel-1979], [Morgenthaler-
1981], [Zucker and Hummel-1981], [Nalwa and

Binford-1986], [Rohr-1992], and [Baker et al.-
1998]. Othermodelmatchingfeaturedetectorshave
usedweighted FHG norms,but in all suchcasesthe
weightingfunction waschosenin a completelyad-
hoc manner. See, for example, [Hueckel-1971] ,
[Hueckel-1973] , and[Hartley-1985].

As with any othermatchingproblem,thereis atrade-
off betweenthecomplexity of thematchingfunction
andits performance.In featuredetection,efficiency
is of vital importance. In fact, one of the primary
reasonsthattheEuclideanF�G normhasbeenusedso
often in the pastis becauseit canbe evaluatedeffi-
ciently. Therefore,we began by showing how the
featuredetectionalgorithm of [Baker et al.-1998],
which usestheEuclideanF G norm,canbeextended
to usean arbitrarily weighted F G norm with essen-
tially no additionalcomputationalcost. This result
allowedusto considertheentireclassof weightedFHG
normsaspossiblematchingfunctionswithout sacri-
ficing efficiency.

Next, weproposedoptimalitycriteriafor two key as-
pectsof featuredetectionperformance:feature de-
tection robustnessand parameterestimationaccu-
racy. We alsoshowedhow thesetwo criteriacanbe
combinedto form other optimality criteria that are
moreappropriatefor specificapplications.We ana-
lyzed the optimality criterion for parameterestima-
tion underthe simplifying assumptionthat the fea-
turemanifold is linear. We showedthat, for a fairly
generalnoisemodel,theoptimalweightingfunction
assignsa weight to eachpixel that is inverselypro-
portionalto thevarianceof thenoiseat thatpixel.

Extendingthisanalysisto thegeneralnon-linearcase
for any of theoptimality criteriaproved intractable.
Insteadwe proposeda numericalalgorithmthatcan
beusedto find theoptimalweightedF�G normfor ar-
bitrary parametricfeaturesandalmostany conceiv-
ableoptimality criterion. We appliedthis algorithm
to threeimportantfeatures:thestepedge, thecorner,
andthesymmetricline. Theresultsdo indeedshow
that the center-most pixels are of little importance
whenestimatingtheparametersof thecorner. They
alsoshow, aswaswidely believed, that the center-
mostpixelsarethemostimportantfor thesub-pixel
localizationof a stepedge. Theseexperimentalre-
sultsdemonstratethemajorcontributionof ourwork
which is a generalpurposemethodof automatically
finding optimal weighting functionsfor parametric
featuredetectors.
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Figure10: (a)An echocardiogramwith ground-truthbloodpooloutline; (b) 1,000perturbedversionsof it (enlarged);
(c) incorrectnessvs. summededgestrengths;(d) incorrectnessvs. learnedGaussiandensityof intensityandedge
strength(5 parameters).Raw edgestrengthwasevenlesscorrelatedto correctnessat blur 4 (not shown). Thetraining
(on 24 images,averaging246contourpixelseach)did unusuallywell on this image,althoughwith theCT datasuch
improvementwastypical. In this image,the trainedmodelscoredthe groundtruth betterthanall but onevery close
perturbation.

13 AppearanceMatching with Partial Data
Appearancematching based on linear subspace
methodshave found many important applications
in computationalvision including face recogni-
tion [Turk and Pentland-1991], real-time 3D ob-
ject recognition[Nayaretal.-1996], andplanarpose
measurement[Krumm-1996]. Appearancematching
methodsgenerallyuseimagebrightnessvaluesdi-
rectly, without relying on theextractionof low-level
cuessuchasedges,local shading,andtexture. This
approachrelies on the fact that brightnessvalues
cancapturebothgeometricandphotometricproper-
tiesof theobjectsof interest.Formally, appearance
matchingis mostoften basedon the genericlinear
model: KML NPO

(1)

where,
K

is thedesignmatrixthatrepresentsthesub-
space,

O
is theintensityarray, andx arethesubspace

coordinatesthatcharacterizetheimage.Array
O

can
containtheentiresetof pixels in the image,or only
a subsetof the pixels. Respectively,

K
will consist

of theentiresetof rowsor only thesubsetthatcorre-
spondsto thepixel subset.

In many caseswe would like to beableto recognize
an imagebasedon only part of its data. Suchan
examplewould be to recognizean occludedimage.
Clearly, occlusiondegradessomeof the brightness
values.Wewouldnot like to usecorruptedpixelsfor
recognition.Occlusionis usuallyspatiallylocalized,
hencethe subsetusedshouldbe localizedas well,
within a square. We would like the window to be
largeandrepresentative of the image.However, the
probability of overlapbetweenthe window andthe
occludedregion, which canbeat a randomlocation
in the image,increaseswith thesizeof thewindow.

Anotherapplicationof subsetselectionwould be to
make recognitionfaster. This is becauserecognition
time is linearly proportionalto the sizeof the pixel
set.

A numberof attemptshave beenmadeto address
recognitionwith occludedor partial data [Murase
andNayar-1995] [MoghaddamandPentland-1995]
[Krumm-1996] [Brunelli
andMesselodi-1993] [LeonardisandBischof-1996].
Thoughtheseapproachesareinteresting,nonesuc-
ceedsto addresstheunderlyingproblemswith ade-
quatedepth. The first threetechniquesselectwin-
dows in an imagewith ad–hocarguments.Further,
they canonly beappliedto specifictypesof images.
The last two initially selecta small subsetof pixels
randomlyandthenpruneit with iterativealgorithms.
However, aniterative algorithmis not guaranteedto
converge to thedesiredsolution. In addition,recog-
nition basedonverysmallsubsetsis not reliable.

Similar problemsto the onesdescribedabove have
been investigatedmore thoroughly in the general
context of statistics [Hotelling-1944] [Ehrenfeld-
1955] [Huber-1981] [CookandWeisberg-1982] . Al-
thoughuseful,their resultshave limitations, for ex-
ample,someassumethat measurementscanbe re-
peated,othersdealonly with closedform mathemat-
ical expressions,or suggestalgorithmspracticalfor
only smalldatasets.

Recently, we have derived optimal criteria [Had-
jimetriousand Nayar-1998] for selectionof a sub-
setof pixels, throughsensitivity analysisof thecor-
respondingsubsetof rows of the designmatrix

K
.

For this, it turnsout that, thecorrelationamongthe
rowsof

K
shouldbeminimal. Furthermore,therows



shouldhave similar magnitudes. Our resultshave
led
Q

to a numberof selectioncriteria,which areused
to implementtwo practicalalgorithms[Hadjimetri-
ousandNayar-1998]. Thealgorithmsarewidely ap-
plicable, and have beenshown to selectsubspaces
with nearoptimalproperties.Thefirst algorithmju-
diciouslyselectssquarewindows. Thesecondalgo-
rithm judiciously selectssubsetsof pixels from the
entireimage.Thealgorithmsweretestedwith noisy
images.They demonstratesuperiorrecognitionper-
formancewhen comparedto algorithmsthat select
pixel subsetsrandomly. In addition, they substan-
tially reducerecognitiontimewith a relatively small
decreasein recognitionperformance[Hadjimetrious
andNayar-1998].

13.1 Structural Analysisof ExtendedVideo
Sequences

In extendedvideo sequences,individual framesare
groupedinto shots,which aredefinedby a sequence
taken by a single camera. Similarly, relatedshots
groupinto scenes,whicharedefinedby asingledra-
maticeventtakenby asmallnumberof relatedcam-
eras.This hierarchicalstructureis deliberatelycon-
structed,asit is dictatedby thelimitationsandpref-
erencesof thehumanvisualandmemorysystems.

Wehavedevisedanddemonstratedthreenovel high-
level segmentationresultsderived from thesecon-
siderations,someof which are analogousto those
involved in the perceptionof the structureof mu-
sic [Kenderand Yeo-1998]. First and primarily,
we have shown a methodfor measuringprobable
sceneboundaries,by calculatinga short-termhu-
man memory-basedmodel of shot-to-shot“coher-
ence”.Thedetectionof local minimain this contin-
uousmeasurepermitsrobustandflexible segmenta-
tion of thevideointo scenes,withoutthenecessityof
first aggregatingshotsinto similarity clusters.Sec-
ondly andindependentlyof the first, but alsobased
onthesememorymodels,wehaveshown aone-pass
on-the-flyshotclusteringalgorithm.Third, we have
shown partially successfulresultson theapplication
of thesetwonew methodsto thenext higher, “theme”
or “act”, level of videostructure.

Thework hasbeenappliedto severalgenres,includ-
ing half hoursitcoms,andmovie-lengthdramaticac-
tion films. Thesehumanperception-basedmethods
arerobust: althoughnotdesignedfor it, they alsoap-
pearsto applyequallywell to thenext lower level of
detail, namely, the detectionof the shotboundaries
themselves.
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