
Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

Abstract

Considerable research work has been done in the area
of surveillance and biometrics, where the goals have
always been high performance, robustness in security and
cost optimization. With the emergence of more intelligent
and complex video surveillance mechanisms, the issue of
“privacy invasion” has been looming large. Very little
investment or effort has gone into looking after this issue
in an efficient and cost-effective way. The process of PICO
(Privacy through Invertible Cryptographic Obscuration)
is a way of using cryptographic techniques and combining
them with image processing and video surveillance to
provide a practical solution to the critical issue of
“privacy invasion”.

This paper presents the idea and example of a real-time
embedded application of the PICO technique, using
uCLinux on the tiny Blackfin DSP architecture, along with
a small Omnivision camera. It demonstrates how the
practical problem of “privacy invasion” can be
successfully addressed through DSP hardware in terms of
smallness in size and cost optimization. After review of
previous applications of “privacy protection”, and system
components, we discuss the “embedded jpeg-space”
detection of regions of interest and the real time
application of encryption techniques to improve privacy
while allowing general surveillance to continue. The
resulting approach permits full access (violation of
privacy) only by access to the private-key to recover the
decryption key, thereby striking a fine trade-off among
privacy, security, cost and space.

1. Introduction: privacy enhancing research
and video surveillance

Before going into the discussion of the real-time
embedded application of PICO, we briefly discuss the
background of the issue of “privacy invasion”, in this
section. The gravity of the situation of “privacy invasion”
is to be understood in the light of the interpretation of
today’s high standard security measures. The questions
to be asked are – what exactly is essential for maintaining

security standards and what exactly can be compromised
for a desirable amount of individual privacy preservation?
While the requirement of an individual’s private data (like
personal records and credentials) can be accepted for basic
security norms, the capture and usage of an individual’s
video/still images, as done in vision and biometrics, is a
matter of concern, as far as privacy is involved .
Moreover, there are legal issues of privacy in restricted
places, as compared to public places. Together, all these
factors make the issue of “privacy” a delicate and critical
one, requiring some serious thought and supervision from
the vision and surveillance system designers. So, while
collecting data and imagery of individuals by surveillance
cameras, balancing security levels and privacy becomes
the fundamental responsibility of the vision system
designers.

Now, talking about the common ways of video
surveillance, research and statistics have shown that the
employment of CCTV has had an overall deterrent effect
on the crime scene by displacing crime and moving it out
of the camera boundaries, as discussed in reference [7].
While the use of surveillance systems in public places puts
the privacy of individuals at stake, the use of surveillance
at restricted private places (like private households,
restrooms) raises legal issues. This reveals the inadequacy
and limitations of current surveillance systems, and
questions the ability of surveillance system designers to
apply technology at the right places in the right way,
preserving privacy aspects and uplifting security standards
at the same time, for the greater cause.

Much of the review on previous research, involving
privacy enhancement, has shown that past works have
lacked the right combination of effectiveness, robustness
and cost optimization. While some technologies have been
based on improving privacy by capturing image/video data
at lesser details, as discussed in reference [8], other
research has been unable to meet the minimum needs of
privacy preservation. That’s where the PICO technique
comes to the rescue (as discussed in reference [1]) – by
involving a two-stage process, where we first encrypt the
selective areas of a video image (for preserving privacy)
and in case of legal authorization, we get back the full

PrivacyCam: a Privacy Preserving Camera
Using uCLinux on the Blackfin DSP

Ankur Chattopadhyay and T.E. Boult

Vision and Security Technology (VAST) Lab
University of Colorado at Colorado Springs,

Colorado Springs, CO 80933

[achattop | tboult] at vast.uccs.edu

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

original image by decryption (thereby meeting security
standards). Unlike earlier work, such as the one discussed
in reference [8], the private information is not permanently
destroyed. A commercial implementation of a privacy-
enhanced surveillance is now available from Emmitall, but
a software implementation presumes that we trust the
computer software not to make copies of imagery.

We believe it is critical for privacy protection to be
implemented in the camera, so that those being observed
can be sure no user can violate the expected operations
without the keys. We still face the challenge of being able
to implement it in the best possible way – which has the
attributes of being efficient, robust, cost-effective and
space-optimized. In this paper, we try to meet those
challenges and show that PICO, when implemented as an
embedded DSP application, in the Blackfin architecture,
meets all the ideal requirements of surveillance –
robustness, efficiency, privacy protection and
affordability. We will discuss and demonstrate our idea in
details, in the following sections.

2. Moving into hardware: notion of our real-
time DSP application

Firstly, implementing PICO in hardware, must address
detection the regions to protect and then protecting it. But
to be effective, it needs to require low cost, low space and
system stability in a DSP hardware environment. A DSP
system would typically be free from some of the typical
vulnerabilities of software implementation, where the
owner of the machine, operating the web cam, will have

access to operating system of the machine, and, thereby,
can control the operation of the camera. In order to
prevent the user from making easy changes to the settings
of the camera, we adopt a DSP based embedded platform
for our webcam (resulting from the integration of Blackfin
DSP module with a small Omnivision camera). And the
other driving factor is, of course, the low cost and small
space requirements of Blackfin DSP hardware.

A few of the output results from our research, involving
the application of selective encryption to DCT based JPEG
compression, are shown in Figure 2. Here, we use
selective encryption of the human face region. We next
discuss the background subtraction model we use for
detection of our region of interest (ROI), which is the
human face in this case.

2.1. Our ROI detection technique

 The technique, we use for detecting the ROI in a given
surveillance image, is based on a background subtraction
model. The process we follow is:
• Firstly we take two separate image frames,

background model and a captured one, and consider
the typical 8 x 8 DCT blocks that belong to each..

• We then perform a per coefficient difference
computation for the blocks, considering two blocks -
one block from each image, at a time.

• Then we compare the obtained difference with a
model threshold value. If the majority of the
coefficient differences are greater than the threshold,
we encode that block, as our ROI; otherwise we don’t
encode that block, and for each pixel, we just put a
new pixel value calculated as the average of the two
corresponding pixel values.

This jpeg-based background subtraction method turns
out to be effective, and can track significant changing
object, which becomes our area of interest in the image. It,
therefore, is not limited to only a technique for face
detection. As shown in the images of Figure2, the
performance of our method of ROI detection, in case of
human face, is different from that of a typical face
detector, which captures only the face. Our method
captures not only the face but also the entire head and
portions of the top of the head and is less susceptible to
missed detection. This application of our method is shown
in Figure 2. If only limited encryption of high-probability
face regions is desired, we encode only those blocks at the
top portion of the ROI. This of course could allow some
privacy invasions, e.g. a person fell, so it’s a mixed
strategy to be considered carefully. But for this paper we
use it as the example. For enhanced privacy, one can just
encode all motion areas.

Incidentally, the pictures presented in Figure 2 have
been taken from our Omnivision CMOS camera, using our
embedded Blackfin application. The environment/platform
issue of running our embedded DSP application will be
discussed later in section 5.

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

For our privacy-enhancing research, we apply our
process of ROI detection, with a fine-tuning, in the form
of giving more weight to the pixel difference values in the
middle frequency range. This means that if we classify our
image into low, mid and high frequency regions, we apply
a weighing to coefficient difference values in the mid-
frequency region, which improves resistance to both low-
frequency lighting variations, and also the high-frequency
noise that can occur low light settings. Doing the
background modeling in jpeg/frequency space simplifies
these “frequency” related filtering. This improves the
chances of detecting and encoding whose privacy
protection is important.

As seen in the pictures (in Figure 2), captured through
our embedded DSP application, running on our research
camera, two scenarios have been given as examples. First,
we take some images captured by the webcam, while
monitoring the kitchen of a household. The motion
happening in the kitchen has been covered in three
different shots taken at three different instants – the empty
kitchen; an instant after the person enters the kitchen and
another example as the person starts working in the
kitchen. As seen, our embedded camera ignores the first
empty frame (where there’s nobody) and starts ROI
detection once it tracks the person (as a changing object)
after he enters the kitchen. The embedded camera
application does ROI detection (capturing the top level
blocks containing the face) and encryption in the second
and third frames, as the person moves within the kitchen
(which is evident from the pictures). Similarly, in the
second scenario, while monitoring a household room, the
camera captures an instant from what’s happened in the
room. As we see, in the raw picture frame, there’s a man
standing, and a lady just entering the frame. Our camera
applies ROI detection on the man as well as the lady, in
spite of her slightly visible presence in the first frame. So,
the camera continues its operation of the face region
hiding, thereby protecting privacy, irrespective of the fact
that there’s a greater prominence/presence/visibility of an
individual.

The images in Figure 2 show the behavior of the
embedded camera in different situations, involving no
human face, and involving one or more human faces at
extreme angles and partial views which would befuddle
most face detectors.. Whether there be motion/relative
displacement or not, the camera functions successfully
from one distinct frame to another, doing its job of ROI
detection and performing privacy preservation in that
region.

3. Introduction to Blackfin DSP processors
DSP processors are, in general, I/O (Input/Output)

balanced processors offering a variety of high speeds
modes/instructions. They are ideally designed in a way
that they can be operated with very low or no overhead
impact to the processor core, leaving enough CPU time for

running the OS (Operating System) and processing the
incoming or outgoing data. A Blackfin DSP processor,
which is the one we use, has multiple, flexible and
independent Direct Memory Access (DMA) controllers.
DMA transfers can occur between the processor’s internal
memories and any of its DMA-capable peripherals.

Additionally, DMA transfers can be performed between
any DMA-capable peripheral and external device
connected to the external memory interfaces, including the
SDRAM controller and the asynchronous memory
controller. Besides other interfaces, the Blackfin processor
provides a Parallel Peripheral Interface (PPI) that can

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

connect directly to parallel D/A and A/D converters, ITU-
R-601/656 video encoders and decoders, and other
general-purpose peripherals, such as the CMOS camera
sensors. The PPI consists of a dedicated input clock pin,
up to 3 frame synchronization pins, and up to 16 data pins.

Overall, Blackfin processors offer a good price
performance ratio (800 MMAC at 400 MHz for less than
$5/unit in quantities) and advanced power management
functions. It provides a very low power, cheap and space-
efficient solution. Besides, Blackfin’s advanced DSP and
multimedia capabilities qualify it not only for audio and
video appliances, but also for all kinds of industrial,
automotive, and communication devices. Moreover,
Blackfin development tools are generally well tested, well
documented and include everything necessary to get
started and successfully finish in time. Much of the
information, gathered on uCLinux/Blackfin architecture
for our research, has been taken from reference [3]. Thus,
the above factors form the main motivating ground for our
decision of moving PICO into Blackfin DSP architecture..

4. Components forming the Blackfin DSP
architecture for our research

This section desibes the components of the tinyboard
Blackfin DSP of our embedded real-time DSP application.

4.1. CM–BF537E core module
We have chosen the Bluetechnix Blackfin DSP

processor CM–BF537E, which is one of the latest
members of the Blackfin family, and is unique because it
is a tiny, high performance and low power DSP/RISC core
module with an on-board 10/100Mbit Ethernet interface
(that includes a 10/100 physical transceiver chip). The
CM-BF537E module can be easily used as a stand-alone
module for a camera system requiring only power supply
and the direct attachment of a compatible video camera.
This makes it ideal for our cheap PICO webcam
application. The details of this DSP processor module are
shown in Figure 3.

4.2. EVAL-BF5xx board

We have chosen the Bluetechnix EVAL-BF5xx Board
as the low cost and lightweight platform for our CM-
BF537E DSP processor. This small baseboard has all
hardware necessary to test the performance of the
processor core modules including a high-speed serial port
directly connectable to a computer USB port, a digital
video camera interface and a SD-Card mass storage device
socket. The details of this component can be obtained
from reference [11].

4.3. EXT-BF5xx camera board

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

To go along with our Blackfin DSP processor module,
we have chosen the OV7660 Omnivision color camera
that comes along with the Bluetechnix EXT-BF5xx-
Camera Board. It as an extender plug-on board for any
EVAL-BF5xx board and includes the option of two
Omnivision CMOS cameras, that allow quick integration
of mono or stereo imaging applications with any Blackfin
based core module. The details of this component can be
obtained from reference [11].

5. Why uCLinux?
We have chosen to focus on uCLinux as our embedded

operating system because of its support to a very large
number of existing applications, the provisions for easy
system (kernel and user space) configuration and the low
cost. Many of the standard Linux applications, released
under various open source licenses, can be cross compiled
to run on the uClinux system and thus contribute to this
real time development environment of Linux. This makes
applications like the basic web services and OpenSSL,
along with image processing tasks simpler.

It is worth noting that uCLinux, however, is not a
formal real-time system. Since Linux was originally
developed for server and desktop usage, it has no hard
real-time capabilities like most other operating systems of
comparable complexity and size. Nevertheless, Linux, and
in particular, uClinux have excellent so-called “soft real-
time” capabilities. This means that while Linux or uClinux
cannot guarantee certain interrupt or scheduler latency
compared to other operating systems of similar
complexity, they show very favorable performance
characteristics. In Linux kernel 2.6.x (the new stable
kernel release that comes with uCLinux), the real-time
development qualities have been improved with the
introduction of the new O(1) scheduler. More performance
related details are discussed in reference [3].

5.1. uCLinux Vs BlackSheep

Blacksheep environment comes as the default built-in
platform for most of the Blackfin family DSP modules. It
is a basic framework to begin working inside the Blackfin
processor chip, and can be operated easily through the
Windows Hyperterminal communication program. Unlike,
the uClinux kernel, it has a boot loader, which is smaller
in size and easy to load, taking into consideration the
limited 4 MB flash memory available in most of the
Blackfin DSP chips (including ours). However, when it
comes to building competitive real-time embedded
applications, BlackSheep generally loses out to uCLinux
because of its limited features like restricted set of basic
commands as compared to that of uClinux, which supports
all commands and facilities provided by Linux. Besides,
development of applications that can be run in BlackSheep
environment requires the exclusive Visual DSP tool,
unlike its rival uCLinux, which provides the same
framework as Linux for application development. Overall,

uCLinux is the preferred real-time operating system, with
its superior real-time qualities and universal cross-
compiler support for a variety of applications, drivers and
libraries. The timing results, which we get during image
capture from our camera in the uCLinux environment,
strengthen the claim of uCLinux as a better choice. These
results are shown later in the next section 6. They show
that the total frame capture time, for our real-time
application in uCLinux, is in the order of thousands of
microseconds only, including the time taken for image
processing (image encryption and image compression).

6. Blackfin DSP architecture powered by
uCLinux: implementation of our embedded
application

The advantage of using the Blackfin processor in
combination with uClinux is the availability of a wide
range of applications, drivers, libraries and protocols, as
open source or free software. In most cases, there is only
basic cross compilation necessary to get that software up
and running. In addition, invaluable tools such as MySQL
and PHP enable developers to have the opportunity to
develop the most demanding, feature-rich applications in a
very short time frame. There is often enough processing
power left for future improvements and addition of new
features. The uCLinux toolchain provides easy, user-
friendly configuration features, supporting the Blackfin
architecture (including our hardware board devices). The
context switch time for a default Linux 2.6.x kernel
running on Blackfin/uClinux has been found to be in the
order of micro seconds (data taken from reference [3].)
• For our research, we first implement the Blackfin

processor module along with the CMOS sensor
camera, as an ethernet-based webcam application. We
then capture the webcam images in the Bitmap
(.BMP) image format, and then apply our ROI (face)
detection and selective encryption enabled JPEG
compression technique to obtain the final privacy-
preserved image. We end up applying the PICO
technique to the images captured from the webcam,
thereby implementing a real-time embedded
application, meant for quality surveillance and
privacy protection. Here is the procedure that is
employed for our privacy-enhanced embedded DSP
camera application:-

• The CM-BF537E DSP chip is embedded on the
EVAL-BF5xx board (which is a USB device capable
of being connected to a computer), with the relevant
hardware settings done to start and access the internal
chip environment, in boot mode, from a computer, via
a serial communication protocol.

• The uClinux environment is then used to customize
kernel settings according to the Blackfin target
module (CM-BF537E) requirements. This involves

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

inclusion of all necessary drivers and application
interfaces meant for our target configuration.

• The whole kernel and user space is then compiled and
linked with the relevant uClinux libraries under the
uClinux environment, and the customized uClinux
kernel image, which is formed, is moved to our DSP
module (through TFTP). We then build a uClinux
boot environment inside the chip.

• In the mean time, a frame capture driver application
was developed into an executable, within the uCLinux
environment (using the Blackfin–gcc compiler). This
executable application is transferred to the uClinux
environment inside the DSP chip.

• The EXT-BF5xx camera module is then connected
and mounted on to the DSP chip contained EVAL-
BF5xx board. Now, once we start running our frame
capture application within the bootable uClinux
environment, inside the CM-BF537E chip, the
program application keeps running and capturing
images from the CMOS Ominivision camera on the
EXT-BF5xx camera board. With a proper webserver
program set up, together with the above mentioned
application, we can convert the integrated system into
an ethereal webcam, once we configure the network
for our ethernet-based camera and target device.

To capture and obtain the images from the CMOS
Omnivision camera, our frame capture application
communicates with the camera through the PPI interface
by opening the PPI device driver, performing I/O controls
and setting the number of pixels per line and the number
of lines to be captured. It reads the I2C (Inter-Integrated
Circuit) bus, and accesses the camera-register values.
After the application invokes the read system call, the PPI
driver arms the DMA transfer. The start of a new frame is
detected through the PPI peripheral, by monitoring the
Line and Frame-Valid strobes. A special correlation
between the two signals indicates the start of frame, and
kicks-off the DMA transfer, capturing the total number of
pixels, given by the number of pixels per line multiplied
by the number of line per sample. The DMA engine stores
the incoming samples at the address allocated by the
application. Our research finds the typical frame-capture
time to be around 30,000 microseconds for our DSP
architecture. Some of the timing results, recorded from the
performance of our embedded camera application, are
encouraging for us. They are given in the next section.

6.1. Results from Our Embedded Real-Time
Application

From our research data collected over a period of time
and over multiple frames, the average time taken for
capturing an entire image (single frame) in Bitmap (.BMP
format), without any image processing operations (like
image compression and image encryption), has been found
to be within the range of 20, 000 microseconds to 40,000
microseconds.

Our research has also indicated that the average time
taken for capturing a JPEG image (single frame), without
privacy encryption, is in the range of 210,000
microseconds to 240,000 microseconds.

Again, from the experimental data collected over a
period of time and over several frames, the average time
for capturing an image (single frame) of PICO encrypted
JPEG format (i.e. after application of privacy-enhanced
JPEG compression with ROI detection and encryption), is
in the range of 240,000 microseconds to 260,000
microseconds.

All the above results discuss closed intervals, and a
uniform image resolution of 320 x 240, with a constant
DSP processor module master-clock frequency of 48
MHz. The image frame capture time varies according to
the external factors like the position of the camera and the
light exposure depending on the time of the day.

To enforce hiding of the relevant portions of the camera
image like the human face (for protecting identity), we use
the selective encryption technique for DCT based images
like JPEG. The code implementation for this is carried out
in uCLinux, using C as the programming language (as
employed in the source code for the JPEG library of the
Independent JPEG Group as in reference [9]). The
algorithmic process is discussed in the next section of our
paper.

Figure 4. Outline diagram of PICO scheme. The actual
encryption key is a public-key encrypted and stored with the
data. To recover the key for decryption requires knowledge of
the private key.

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

7. Selective encryption of Jpeg images for the
PrivacyCam

We now discuss the cryptographic obscuration
algorithm we use for the selective encryption of the
Omnivision camera images. By selective encryption, we
mean encryption of a certain area of the concerned image,
which is our region of interest (ROI). This could be
obscuring the human faces (based on face detection) or
any other selected portion of the image, for the basic
purpose of privacy enhancement in surveillance video. So,
the selective encryption process may be used for hiding
any part of the given image, with the option of recovering
the data later, if legally warranted, using the encryption
key. Since we can revert to the original encrypted sensitive
data using decryption, the process is invertible. It is this
aspect that makes it acceptable and advantageous in many
legal scenarios.

We have mainly dealt with web images in JPEG format
(most common in today’s IP based web cameras) for our
research. Dealing with JPEG images, we have the options
of doing the partial encryption during or after the
compression. In our research, we have taken the approach
of applying the encryption during the JPEG compression
process just after the DCT quantization but before the
lossless Huffman encoding. We perform the encryption
(blockwise) at a typical 8x8 block by block level. Here, we
use the public-key AES encryption technique, storing the
public key, the session encryption key and the encrypted
region’s definitions all inside the JPEG file header as
comments. The decryption details (as in the file header) ca
be publicly read but not used with the private key, thereby
preserving the privacy details for the individuals in the
captured video image. If there’s a legal issue (crime
scene), then, with proper authorization, the session key
and other decryption details can be provided for obtaining
the identity of the individual from the original data/image.
This revertible (invertible) aspect of our embedded
application makes it unique. Since we are doing a face
encryption, which means encryption at one place/region, a
typical 8 x 8 block encryption helps our cause; as for
larger block encryption, we might “round off” the useful
data, thereby losing appropriate features of the image. In
fact, AES algorithm involves boundary alignment or
padding of the data boundaries. This might lead to
“rounding off” or “blocking” artifacts at the boundaries.

8. Conclusions and future scope of work
This paper presents and demonstrates the idea of real-

time embedded application of the PICO technique on
uCLinux/Blackfin DSP architecture. Our research shows
that when PICO technique is applied on a cheap, tiny,
powerful DSP framework, implemented as a
network/ethereal webcam, it can strike a fine balance
between privacy and security, and address the problem of
“privacy invasion” in a robust, efficient and cost-effective

way, in optimized space. It also establishes the fact that
uClinux/Blackfin architecture can make the
implementation of the PICO concept much affordable and
easy, thereby helping us to achieve further goals of more
improved, enhanced vision and surveillance systems,
where we can strike a perfect balance among privacy,
security, cost and space.

There is scope of future research work in the
implementation of the selective encryption technique on
the uClinux/Blackfin architecture, using the methods of
motion detection or skin detection. The use of Blackfin
core modules and boards, in implementing surveillance
webcams can help in achieving security in more private
places like restrooms, private household, inner chambers,
etc. Moreover, since the Blackfin DSP modules and
boards are flexible to use, and meant for audio and other
multimedia applications, they have the potential to extend
our current embedded application from only video to both
audio and audio-video surveillance. Thus, with
uCLinux/Blackfin DSP architecture providing a new,
better way of developing real-time embedded applications,
we can think in terms of more balanced, secure, efficient,
cost-effective and space optimized computer vision
applications, which will compete seriously with the
currently existing, typical video surveillance systems.

References:
[1] T.E. Boult, PICO: Privacy through Invertible

Cryptographic Obscuration - IEEE Computer Vision
for Interactive and Intelligent Environments, 2005.

[2] Gregory K. Wallace, The JPEG Still Picture
Compression Standard - IEEE Transactions on
Consumer Electronics, Vol. 38, No. 1, February 1992.

[3] Michael Hennerich, Linux on the Blackfin DSP
Architecture - Embedded Systems Conference Silicon
Valley 2006.

[4] J.M. Rodriguez, W. Puech and A.G. Borsb, A Selective
Encryption for Heterogeneous Color JPEG Images
Based on VLC and AES Stream Cipher - Third
European Conference on Color in Graphics, Imaging
and Vision, June, 2006.

[5] W. Puech, P. Meuel, J.C. Bajard and M. Chaumont,
Face Protection by Fast Selective Encryption in a Video
- IET, Crime Security Conference June, 2006.

[6] Marc Van Droogenbroeck, Partial Encryption of
Images for Real-time Applications - Fourth IEEE Signal
Processing Symposium, pages 11-15, April 2004.

[7] D.H. Flaherty, Video surveillance by public bodies: A
discussion, Investigation report P98-012, Information
and Privacy Commissioner for British Columbia 1998
http://www.oipcbc.org/investigations/reports/invrpt12.html.

Preprint of a paper to be presented at Third IEEE Workshop on Embedded Vision Systems, June 2007.
 Do not redistribute

[8] Andrew Senior, Sharath Pankanti, Arun Hampapur,
Lisa Brown, Ying-Li Tian, Ahmet Ekin, Blinkering
Surveillance: Enabling Video Privacy through
Computer Vision - IEEE Security & Privacy, Volume
3, (no 3), pages 50-57 in 2005.

[9] Independent JPEG Group Website -http://www.ijg.org/
Open Source Code for JPEG Algorithm.

[10] OpenSSL Website http://www.openssl.org/ -Open
Source Library for Cryptographic Functions.

[11] Bluetechnix Website - http://tinyboards.com
Manuals, Information and Guidelines for Blackfin
modules and boards used.

[12] Blackfin uCLinux Group and Forum Website
http://blackfin.uclinux.org/gf/.

.

Figure 5. JPEG overview for the selective encryption process, take from reference [4].

