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— g . aea®f 1. Dataset: Training ILSVRC’12: 1.3M training images, 1K classes
- . — % - ———r > OPENMAX VS SOFTMAX FAILURE PREDICTION WITH OPENMAX = 2. Dataset: Testing 80K images total. 50K Images (1K classes) from
) (N — - ILSVRC’12 Validation set, 15K Fooling Images(1K classes), 15K
— L0 . open set images from 360 classes from ILSVRC’10 (these 360 classes
T g are NOT present in ILSVRC’12).
Alexet o 3. Model: BVLC AlexNet (57.1% top-1 accuracy on ILSVRC’12 val
%06 wie set).
§ ' L , - o : 4. Algorithms: SoftMax, OpenMax and 1-vs-Set algorithm.
£ o -llllﬂl — : gLt S 5. Performance: OpenMax performance gain is nearly 4.3% improve-
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extended using Meta-Recognition on activation vectors as in S 4 o ' i = T set OpenMax correctly classified 3450 more images than SoftMax
Alg. 2, with the SoftMax later adapted to OpenMax, as in Eq. 0.3 AR L | | with optimal threshold and 9847 more than the base deep net-
2, provides an open set recognition function. omax Frobabiies work. Optimal F-Measure for each algorithm was SoftMax 0.58,

1. Image from Agama class gets rejected by MAV for

. , . , OpenMax 0.595 and 1-vs-Set SVM 0.407.
Agama. Highest scoring class is jeep with prob 0.26.
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