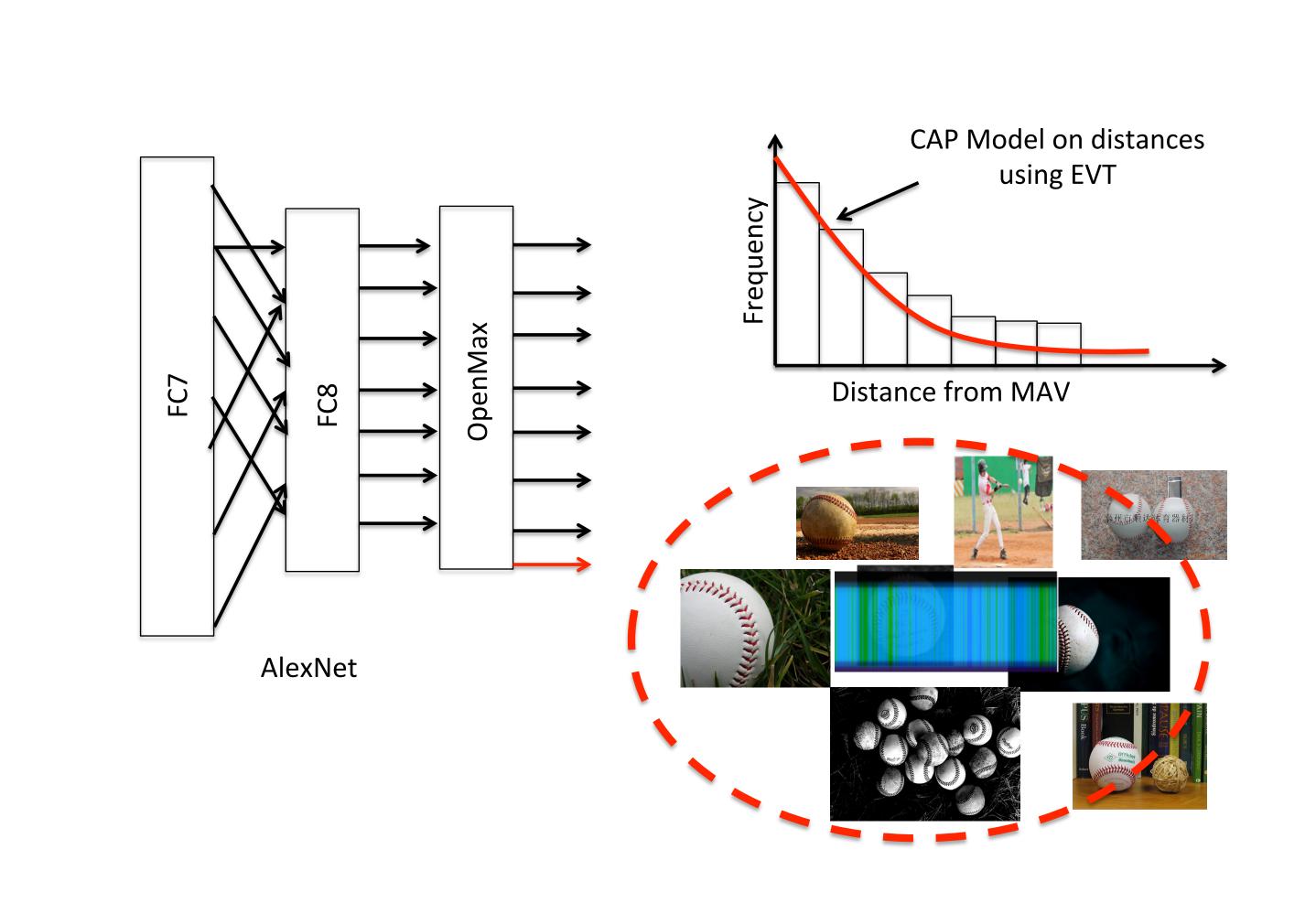


CONTRIBUTIONS

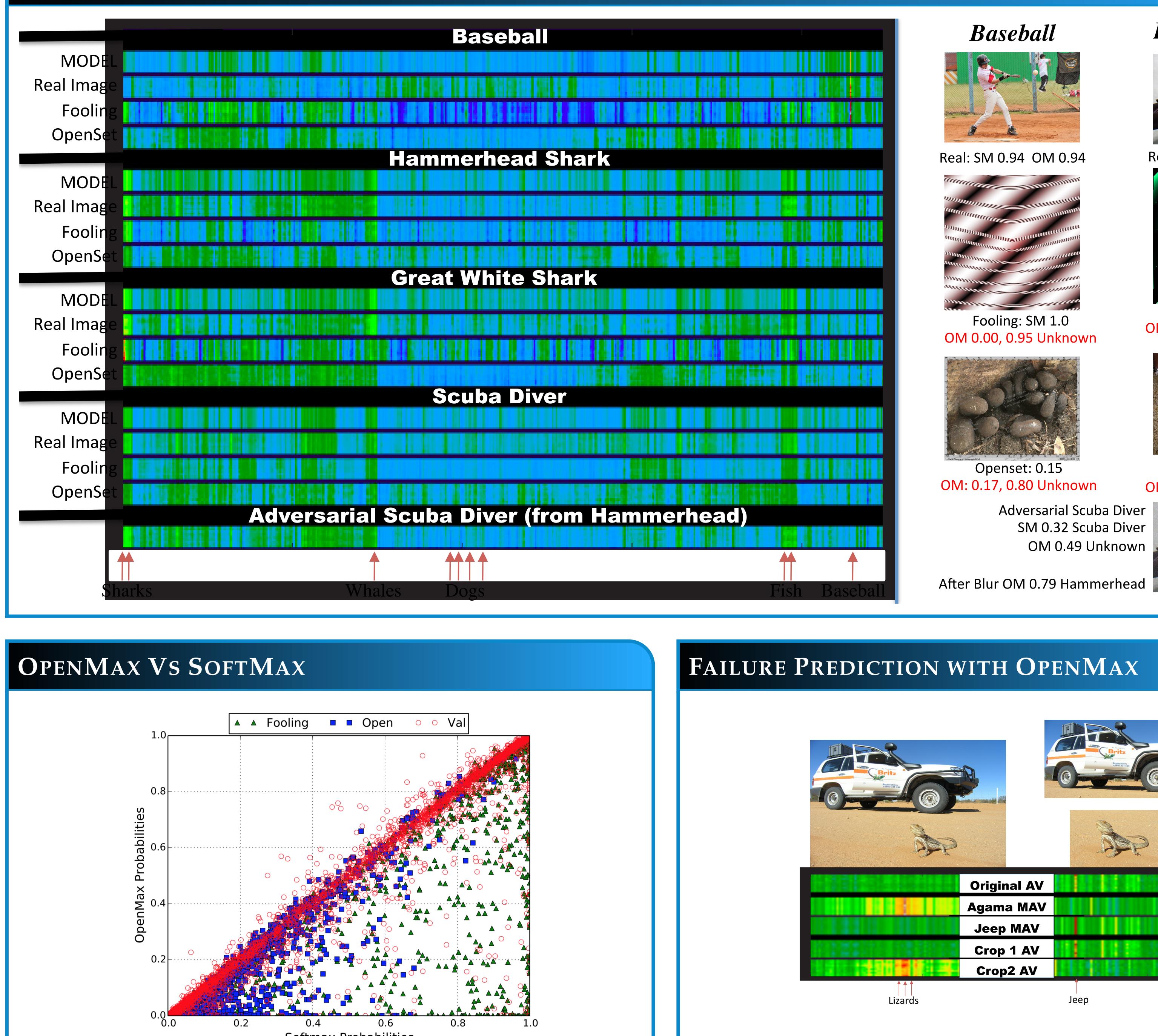
- 1. Formalization of **Open Set Deep Networks** using Meta-Recognition and OpenMax.
- 2. Multi-Class Meta-Recognition using Activation Vectors to estimate the probability of deep network failure.
- 3. Proof that the proposed approach manages open **space risk** for deep networks.
- 4. Experimental analysis of the effectiveness of open set deep networks at rejecting unknown classes, fooling images and obvious errors from adversarial images, while maintaining its accuracy on testing images



OPENMAX LAYER FOR DEEP NETWORKS

Theorem 1 (Open Set Deep Networks). A deep network extended using Meta-Recognition on activation vectors as in Alg. 2, with the SoftMax later adapted to OpenMax, as in Eq. 2, provides an open set recognition function.

Proof. The Meta-Recognition probability (CDF of a Weibull) is a monotonically increasing function of $\|\mu_i - \mu_i\|$ x ||, and hence $1 - \omega_i(x)$ is monotonically decreasing. Thus, they form the basis for a compact abating probability model. (Please refer the paper for more details about the proof.)



1. The more off-diagonal a point, the more OpenMax altered the probabilities

Towards Open Set Deep Networks Abhijit Bendale^{1,2}, Terrance Boult²

Samsung Research America¹ and University of Colorado Colorado Springs²

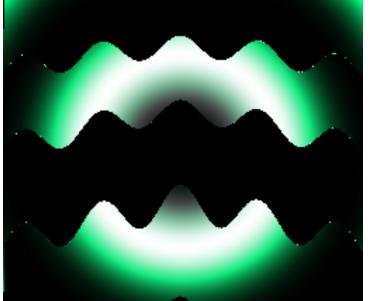
MEAN ACTIVATION VECTORS

2. For some inputs OpenMax increased the classes probability, which occurs when the leading class is partially rejected thereby reducing its probability and increasing a second or higher ranked class.

- 1. Image from Agama class gets rejected by MAV for
- 2. Crop 1 is the jeep region (accepted with 0.32 probabilscore)
- 3. Failure prediction with adversarial images

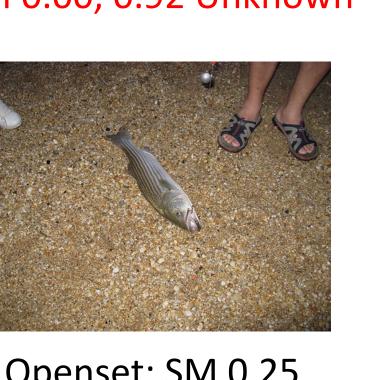
Adversarial Scuba Diver SM 0.32 Scuba Diver OM 0.49 Unknown

Hammerhead Real: SM 0.57, OM 0.58



Fooling: SM 0.98 OM 0.00, 0.92 Unknown

Openset: SM 0.25 M 0.10, 0.86 Unknown



META-RECOGNITION CALIBRATION FOR OSDN

Algorithm 1 EVT Meta-Recognition Calibration for Open Set Deep Networks, with per class Weibull fit to η largest distance to mean activation vector. Returns libMR models ρ_j which includes parameters τ_i for shifting the data as well as the Weibull shape and scale parameters: κ_i , λ_i .

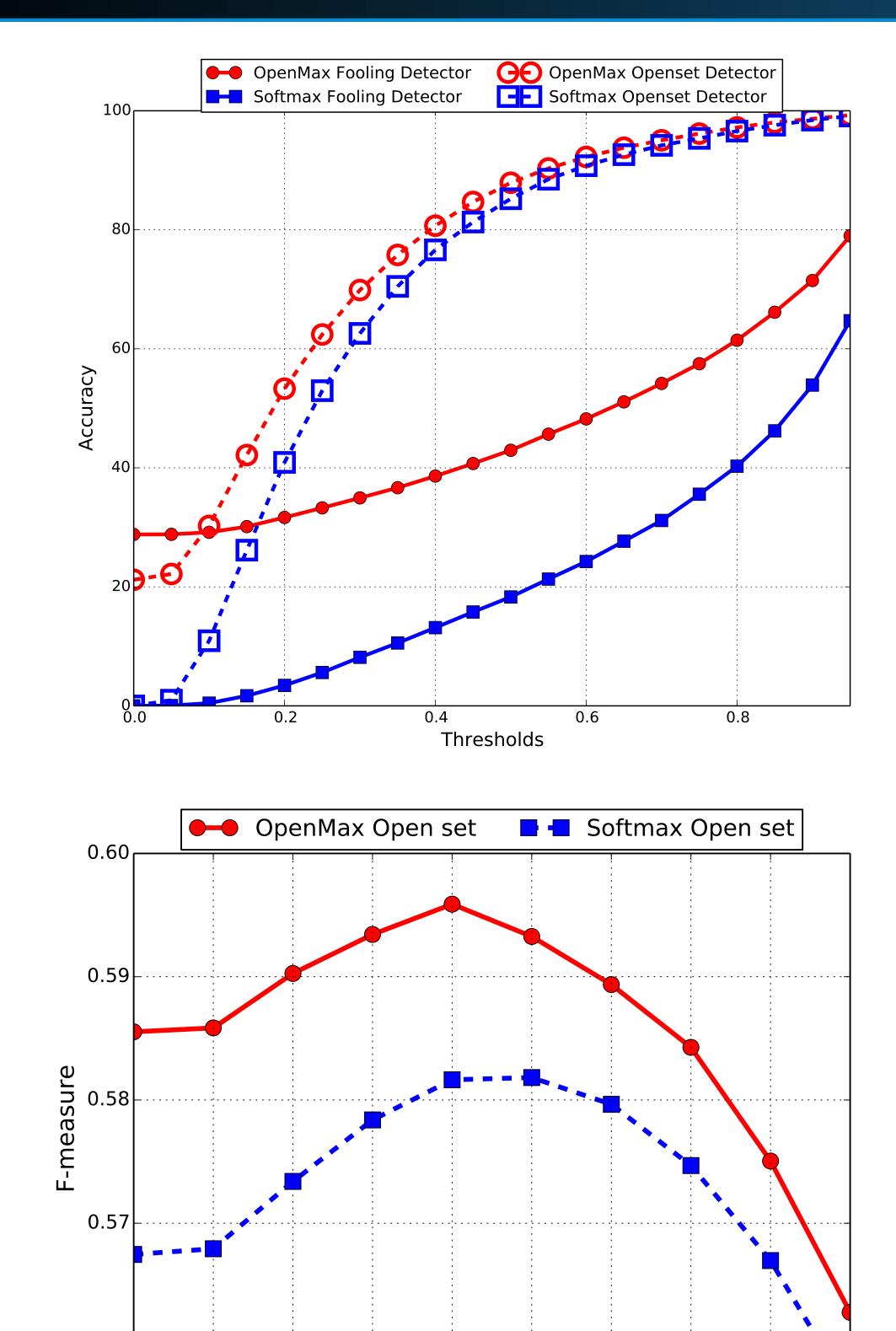
Require: FitHigh function from libMR

Require: Activation levels in the penultimate network layer $\mathbf{v}(\mathbf{x}) = v_1(x) \dots v_N(x)$

Require: For each class j let $S_{i,j} = v_j(x_{i,j})$ for each correctly classified training example $x_{i,j}$.

- : for j = 1 ... N do
- **Compute mean AV**, $\mu_j = mean_i(S_{i,j})$
- **EVT Fit** $\rho_j = (\tau_j, \kappa_j, \lambda_j) = \text{FitHigh}(\|\hat{S}_j \mu_j\|, \eta)$
- 4: end for
- 5: **Return** means μ_j and libMR models ρ_j

EXPERIMENTS



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

al AV	
MAV	
VAV	
I AV	
2 AV	
	Jeep

Agama. Highest scoring class is jeep with prob 0.26. ity), crop 2 is agama (accepted with 0.21 probability

CVPR2016

OPENMAX

Algorithm 2 OpenMax probability estimation with rejection of
unknown or uncertain inputs.
Require: Activation vector for $\mathbf{v}(\mathbf{x}) = v_1(x), \ldots, v_N(x)$
Require: means μ_j and libMR models $\rho_j = (\tau_i, \lambda_i, \kappa_i)$
Require: α , the numer of "top" classes to revise
1: Let $s(i) = \operatorname{argsort}(v_j(x))$; Let $\omega_j = 1$
2: for $i = 1,, \alpha$ do
3: $\omega_{s(i)}(x) = 1 - \frac{\alpha - i}{\alpha} e^{-\left(\frac{\ x - \tau_{s(i)}\ }{\lambda_{s(i)}}\right)^{\kappa_{s(i)}}}$ 4: end for
5: Revise activation vector $\hat{v}(x) = \mathbf{v}(\mathbf{x}) \circ \omega(\mathbf{x})$
6: Define $\hat{v}_0(x) = \sum_i v_i(x)(1 - \omega_i(x)).$
7: $\hat{P}(y=j \mathbf{x}) = \frac{e^{\hat{\mathbf{v}}_{\mathbf{j}}(\mathbf{x})}}{\sum_{i=0}^{N} e^{\hat{\mathbf{v}}_{\mathbf{i}}(\mathbf{x})}} $ (2)
8: Let $y^* = \operatorname{argmax}_j P(y = j \mathbf{x})$
9: Reject input if $y^* = 0$ or $P(y = y^* \mathbf{x}) < \epsilon$
9: Reject input if $y^* == 0$ or $P(y = y^* \mathbf{x}) < \epsilon$

Experiment Details

- 1. Dataset: Training ILSVRC'12: 1.3M training images, 1K classes
- 2. Dataset: Testing 80K images total. 50K Images (1K classes) from ILSVRC'12 Validation set, 15K Fooling Images(1K classes), 15K open set images from 360 classes from ILSVRC'10 (these 360 classes are NOT present in ILSVRC'12).
- 3. Model: BVLC AlexNet (57.1% top-1 accuracy on ILSVRC'12 val
- 4. Algorithms: SoftMax, OpenMax and 1-vs-Set algorithm.
- 5. Performance: OpenMax performance gain is nearly 4.3% improvement accuracy over SoftMax with optimal threshold, and 12.3% over the base deep network. Putting that in context, over the test set OpenMax correctly classified 3450 more images than SoftMax with optimal threshold and 9847 more than the base deep network. Optimal F-Measure for each algorithm was SoftMax 0.58, OpenMax 0.595 and 1-vs-Set SVM 0.407.

Acknowledgements: The work support in part by NSF Research Grant IIS-1320956 and UCCS Graduate School Fellowship.

Contact: {abendale,tboult}@vast.uccs.edu

Code/Data: http://vast.uccs.edu/OSDN