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Multi-fingerprint matching is an important problem for the biometrics community.

To increase collection speed and decrease potential false matches, many identity manage-

ment programs have moved to capturing Slap images, were a single image simultaneously

collects images of four or eight fingerprints. Multi-finger matching is traditionally done

by segmenting the slap images, to isolate fingertips and applying individual fingerprint

matching to the segmented results. Though this is approach is coherent with the notion of

backward compatibility, the process of segmentation has numerous problems. We propose

a novel method of multi-fingerprint recognition without segmentation. In our approach

we create “forests of trees” from minutiae pairs in the fingerprint, forming consistent

connected components in the forests. The size of these consistent connected components

determines the match score. Since this representation does not require any segmentation

of the fingerprint slap data into individual fingers, it is more robust to spatial, rotational

and other variations and can make use of added data from other segments of the finger.

The approach presented here is a true mul- tiple fingerprint matching approach as op-

posed to fusing matching re- sults from individual fingers. The Forest Finger algorithm

can be applied to multiple independent fingers without finger assignment. Our results
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on the NIST DB29 shows superior performance when compared with the existing NIST

Bozorth matcher [3] applied individually to segmented prints. In the latter section of the

thesis, we also discuss ways of extending this algorithm to to mix data from multiple-

fingers, making it infeasible to search the database with latent prints from single finger.

We argue that this approach is necessary for the purpose of building application specific

databases, a notion important for protecting privacy of an individual. This thesis provides

an approach, that can be followed by many existing methods to extend their methods for

performing “true” multi-fingerprint matching.
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Chapter 1

Introduction

1.1 Biometrics

Identity management lies at the very core of efficient functioning of any country. Bio-

metrics have gained prominence in recent years as a premier identity management tool.

Biometrics helps to identify a person based on his biological(anatomical or physiological)

and/or behavioral characteristics. Various biological biometrics such as fingerprints, face,

voice, iris have gained importance in recent years. A good biometric is universal, unique,

does not change significantly over time and is easy to collect. Fingerprints, since the sem-

inal work of Francis Galton, has been widely used in forensic investigations because of

their strong uniqueness. However, in last decade biometrics and fingerprints specifically,

have been found to be useful not just in forensic investigations but also in many identity
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management programs like National ID programs, passport programs, and more recently

even commercial domains like access control at Disneyland.

As fingerprint recognition systems become more and more widespread, its perfor-

mance needs to match the scale of population size that it intends to cater. Many automated

fingerprint recognition systems like IAFIS [2] have been making significant progress in

past decade or so to improve the identification rates and reduce false match rates in large

scale fingerprint identification and verification systems. However, even though the sys-

tems are getting more and more accurate there are computational and algorithmic limita-

tions. A recent study conducted by Executive office of the President [1] concluded that

as the number of fingerprints captured per individual increases, the accuracy with which

he can identified significantly increases. In resonance with this theme, multi-fingerprint

recognition has been of interest to US Citizenship and Immigration Service (USCIS),

Federal Bureau of Investigation (FBI) and National Institute of Standards and Technol-

ogy (NIST), Department of Justice (DOJ) and Department of Homeland Security(DHS)

as well as many international organizations.

1.2 Multi-Fingerprint Recognition

Slap fingerprints, or simultaneous plain impressions, are a single image that capture the

fingerprints of multiple fingers at the same time. These can be captured by a live scanner
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Figure 1.1: Example slap scan at a US-VISIT counter at an airport. Slaps are quick and
easy to capture and at the same time capture significant amount of information about the
individual (Picture taken from [19])

or can be ink prints [16]. Figure 1.1 shows an example capture of multi-fingerprint cap-

ture at a DHS counter.Slap fingerprints are compromise between rolled finger-prints and

single-finger flat fingerprints. Slap fingerprints are more tolerant to attempts of spoofing

they system(by changing the order of enrollment of the finger) since all the fingers have

to be scanned at the same time. Capturing of slap images is easier, faster and much less

error prone than rolls or single finger flats.
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1.3 To Seg or Not to Seg

Fingerprint recognition has, since its earliest days, presumed segmentation of any multi-

finger data. Part of that was pragmatic: to reduce computational processing. Part of it

was effectiveness, when data was hand segmented and hand labeled. Early techniques

were sufficient on scanned fingerprint cards and since early digital fingerprint sensors

were/are single finger sensors, so segmentation was not a significant issue. Post 2001,

to address the speed of processing, and reduce potential of ordering errors in large scale

programs, such as boarder crossing or other large-scale biometric identification programs,

a wide range of “slap” sensors have been developed that capture multiple fingers or even

whole hands at once, e.g. see figure 1.4. To maintain backwards processing compati-

bility, the community worked to develop automated segmentation algorithms to extract

the distal phalanges (fingertip) images from the slap, with some example successful and

unsuccessful segmentation (from NIST software) overlaid on the slap image. While it

may be expedient to segment first to reuse old fingerprint algorithms, prepossessing with

segmentation means that any error in the segmentation will negatively impact the recog-

nition, and in this case it also means throwing away data from the intermediate phalanges.

Slap Segmentation was evaluated by NIST in [17], and while good, was not perfect, con-

cluding “ The most accurate segmenters produced at least three highly matchable fingers

and correctly identified finger positions in from 93% to over 99% of the slap images,
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Figure 1.2: Segmentation process is very senstitive to variations commonly found in slap
images

depending on the data source.” When working on recognition problem with potentially

1Billion (100Million*10) or more fingers in the database to match against, a percentage

point in accuracy is very significant.

Segmentation algorithms were only moderately successful in segmenting slaps into

individual fingers because of inherent variations in slap images. Variations in orientation,

significant amount of paper noise or background noise, existance of printed text, cropped

fingers caused significant problems. Figure 1.2 illustrates this point in further detail.

Not only that segmentation process was sensitive to variations, many times it captured

wrong piece of data and identified it as a finger. Refer the example in figure 1.3
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Figure 1.3: Many times segmentation failed miserably capturing completely random in-
formation as fingerprint

Figure 1.4: Example matching Slap Images from NIST Special Database 29 [16], with
the sub-regions detected by NIST slapseg overlaid in red.
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1.4 Contribution of the work

Hence we question the notion: Is it necessary to segment the image in order to recog-

nize/match the fingerprint or can we completely bypass the segmentation process?

The contribution of the work is 2 fold. First, we introduce a method of matching mul-

tiple fingerprint without segmentation. We call this algorithm as ForestFingers algorithm.

In our approach we create forests of trees from edges of minutiae pairs, forming consistent

connected components in the forests. The size of these consistent connected components

determines the match score. Since this representation does not require any segmenta- tion

of the fingerprint slap data into individual fingers, it is more robust to spatial, rotational

and other variations and can make use of added data from other segments of the finger.

Our results on the NIST DB29 shows superior accuracy when compared with the existing

NIST Bozorth matcher applied individually to segmented prints, to fused rolled prints, or

applying Bozorth directly to the slap images.

The second contribution of this work is related to privacy. We introduce the concept of

id-privacy and show how using forest-representation using unsegmented data what may

be the single most important “privacy” issue in biometrics: how to prevent function creep

in large-scale biometric programs. We show we can achieve 2-id-privacy for fingerprint-

based recognition allowing de-duplications while preventing searching with a latent print.
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Chapter 2

ForestFingers: Multi-Fingerprint

Matching without segmentation

2.1 Prior Art

A fingerprint matching algorithm compares two given fingerprints and returns either a de-

gree of similarity or a binary decision (mated/non-mated). Without the loss of generality,

we denote the input fingerprint to be matched as probe against a gallery (database) im-

ages. We are more interested in the fingerprint verification problem ( i.e. searching for an

input fingerprint in gallery of N fin- gerprints). Most of the current fingerprint matching

approaches can be divided into correlation-based matching (Stoianov et al (1999), Wat-

son et al (2000)), minutiae based matching and non-minutiae fea- ture based matching
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systems. There has been significant progress in minutiae based fingerprint matching sys-

tems. Minutiae based matching methods are of particular interest because these methods

have often been the best performing methods on many of the current benchmark tests

like FVC 2002, FVC 2004 and FVC 2006. Among these methods, people have focussed

on geometric methods, Hough Transform based methods, minutiae matching with pre-

alignment. Also in these methods there have been some more methods focussing on local

minutiae matching where emphasis is on matching local minutiae structures which are

invariant with respect to global transformation (e.g. translation, rotation etc)and hence

suitable for matching without any a priori global alignment.

For the problem of simultaneous multiple-fingerprint matching without segmentation,

the afore mentioned methods have some drawbacks. Correlation based methods have been

abandoned by the fingerprint recognition community because of the costly hardware in-

volved and its lack of performance. These methods also suffer significantly from rotation

and distortion variations. Minutiae based local structure matching methods have gained

prominence in recent past because of its performance. These methods capture local struc-

ture like stars Ratha et al 2000, triangles Kovacs et al 2000, Bhanu et al or exhaustive

graph search like Kplets (Govindraju et al) or Bozorth Matcher (2003)). This local struc-

ture matching stage is followed by a consolidation stage, where usually maximum size

local structure is quantified by a match-score as a measure of similarity between the fin-

gerprints. These methods have shown good performance on single fingerprint recognition
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problem, however they lack the notion of distributed consolidation of the local structure

in different parts of image which is essential for the recognition of multiple fingerprints.

What is needed here is a representation that is invariant to translation and orientation and

allows formation of distributed structures in different parts of the image (ideally a sep-

arate representation localized around each fingerprint in the image). If we have such a

representation, it would be independent of number of fingers in the slap image hence it

can be easily adapted as per need to any number of fingerprints in the image.

2.2 Bozorth Matcher: Quick Overview

The algorithm that we propose in the following section is loosely based on, and compared

to, NIST Bozorth Matcher, which is a minutiae based local structure matching method for

single fingerprint matching [?]. Minutiae points are interest points in fingerprint image

which indicate points of ridge bifurcation or ridge ending, sometimes also termed as level

2 features of fingerprints. Use of minutiae points for fingerprint identification has long

history in forensic investigation , which is also one of the main reasons for use of these

features in automated fingerprint identification systems.

We provide here a brief discussion of Bozorth matcher. The reader is advised to check

the references for more details. The Bozorth matcher works on minutiae files created by

MINDTCT program of the NFIS2 package [?] which is a list of minutiae points in a

fingerprint image with (x, y, θ, q) entries where (x, y) is the position of minutia point in
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Figure 2.1: Minutiae points detected and highlighted on a fingerprint image

fingerprint image, θ is the orientation angle of the ridge at minutia point and q is the qual-

ity of the minutia point determined by NIST NFIQ algorithm. Since this is a fingerprint

matching algorithm it considers probe and gallery image minutiae files simultaneously.

Refer figure 2.1 to understand what minutia file represents.

The bozorth algorithm is as follows [3]:

1. Construct Intra-Fingerprint Minutia Comparison Tables: One table for the

probe fingerprint and one table for each gallery fingerprint to be matched against

2. Construct an Inter-Fingerprint Compatibility Table: Compare a probe prints

minutia comparison table to a gallery prints minutia comparison table and construct
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a new compatibility table

3. Traverse the Inter-Fingerprint Compatibility Table: Traverse and link table en-

tries into clusters and Combine compatible clusters and accumulate a match score

The major drawback with Bozorth matcher in terms of handling multiple fingerprints

is that it forms a single maximally connected and consistent graph/web for entire finger-

print. Hence, when considered for a slap, it would form a representation for a single

fingerprint only. Here we bring in key novelty into Bozorth matcher with our approach.

Figure 2.2 shows the entire pipeline of our approach with pointers as to where we start

building on Bozorth matcher. The following sections describe in detail the entire process

and in every section we will highlight our contributions.

2.3 Pair Table Formation

The first stage in the algorithm is Pair-table formation. Let us denote list of minutiae

points from probe as P = {m1,m2, ...,mp} where mi = {xi, yi, θi}, i = 1...p and

minutiae points from gallery as G = {m1,m2, ...,mg} where mj = {xj, yj, θj}, j =

1...g. From sets P and G relative measurements (distances and angles) are computed

from each minutia to all other minutiae points of the respective fingerprint (termed as

intra-fingerprint minutia comparison tables in NFIS2). P will yield pair-table PTp =

{p1, p2, ...pq} where pi, i = 1..q is an entry in PTp, for each probe image. Similarly, G
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Figure 2.2: ForestFingers Algorithm Pipepline. We build on existing Bozorth matcher and
add our own set of modifications that enable us to do multi-fingerprint matching without
segmentation

will yield pair table PTg = {p′
1, p

′
2, ...p

′
r} where p′

j, j = 1..r is an entry in PTg for each

gallery image. Every entry in PTp and PTg consists of {dkj, β1, β2, k, j, θkj} where dkjis

the relative distance, β1, β2, θkj are relative angles and k, j are indices of the minutiae

points under consideration. The pair tables are prunned by a (relative) distance threshold

(the reason being to have emphasis on local structure analysis). To understand what each

edge means with respect to fingerprint refer figure 2.3
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Figure 2.3: Pair-table consists of computation of relative distances and angles between
minutiae points making the representation rotation and translation invariant. In the above
figure shown is the concept of computation of relative distances and angles between minu-
tiae points (figure from from [3]) along with its physical interpretation on actual finger-
print (the edges are displayed in blue) This figure best if viewed in color

2.4 Match-Table Formation

In next step, PTp and PTg are sorted on distance, and each entry of PTp is compared with

each entry of PTg to generate a list of compatible entries where two entries of PTp (pi)

and PTg (p′
j) are compatible if and only if the distances and angles are within prespecified

tolerances. This list of potentially compatible entries between PTp and PTg form match

tableMT = {r1, r2, ...rm}where ri, i = 1...m is each compatible entry in the match table

and m is the total number of entries in the match table. Each entry i.e. ri in MT consists

of {∆β(θ(Pm), θ(Gn)), k(Pm), j(Pm), k(Gn), j(Gn)} where one pair is from probe fin-

gerprint (k(Pm), j(Pm)) and other is from gallery fingerprint (k(Gn), j(Gn)). Thus, we
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have four minutia points per entry in match table ( two from probe and two from gallery.

Match-table is termed as inter-fingerprint compatibility table in NFIS2. Each entry in

match-table thus has correspondence information: which means kth entry of probe k(Pm)

potentially matches to kth entry of gallery k(Gn) and similarly for the jth entry in probe

j(Pm)) corresponds to jth entry in probe j(Gm)). This is based on the hypothesis that for

a pair from probe and gallery, if the relative distances and angles are within tolerance, then

those pairs are potentially the same pairs (i.e. they represent the same minutiae points in

probe and gallery image)

We introduce our own set of modifications to the basic Bozorth process. During the

formation of pair-table, we also include a field with the the product of minutiae qualities

under consideration to the pair-table. While forming the match-table, if the edge-pairs

are compatible, we add a “quality score” in the match-table, which can be raw minutiae

quality or can also include differences between fields. The intuition for this modification

is that we want to favor the minutia points/pairs with higher quality. In the discussion

section, we argue that this quality reward not only helps to increase the accuracy of the

algorithm, but also gives significant advantage to the algorithm in terms of time of execu-

tion.
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2.5 Formation of CMPGs

The correspondence information in match-table is important since the match-table created

in previous section contains many inconsistent assignments. Consider figure 2.4, which

contains an example of match-table entries. In this figure the column p1 corresponds to

column g1 (i.e. minutia point in p1 (probe) is same as minutia point g1 (gallery)) and sim-

ilarly p2 corresponds to g2. The first entry (row of an example match-table) says minutia

point 1 in probe matches with minutiae point 4 in gallery. However, the second entry in

the match-table contradicts it saying minutia point 1 in probe corresponds to minutia point

5 in gallery. We obviously need to remove such inconsistencies. For this purpose we sep-

arate the match-table into set of consistent minutia point assignment groups which we call

Consistent Minutiae Pair Groups or CMPGs. The process of separating the match-table

into CMPGs is shown in figure 2.4. Figure 2.4 shows formation of two such CMPGs.

Here note that each minutia point in the probe columns of the CMPG, has one and only

one corresponding minutia point assigned in gallery columns of the CMPGs. This is a

greedy process because we start from the first entry in the match-table and find all the

successive entries in the match-table that are consistent with the current CMPG (i.e. there

is one and only one probe minutia point to gallery minutia point assignment). As soon as

an inconsistency is encountered (as in row 1 and row 2 of match-table) a new CMPG is

created. This process is continued until all the rows of match-table are members of their
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Figure 2.4: Inconsistencies in Match-Table and formation of Consistent Minutiae Pair
Groups (CMPG)

Figure 2.5: Formation of links in a CMPG. Here we say that row 1 and row 2 of match-
table are form a link between one another, since they have a minutia point (2 for probe or
10 for gallery) in common

respective CMPGs. Empirically we have found that majority of rows of match-table get

grouped within first 20 or so CMPGs, for true-match (i.e. probe and gallery images are

from the same person).
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2.6 Formation of Links

Referring to Figure 2.5, we say that a particular row in match-table is connected to another

row if and only if there exists a common minutia point between them. Consider CMPG1

in our example from 2.4 In this example, 2 is the common minutia point between row 1

and row 2 (and also row 2 and row 3) in probe part of the match-table. Similarly, 10 is

common minutia point joining row 1 and 2 in gallery part (and also row 2 and row 3).

In this way we proceed to find all the connections a row can have in a CMPG. We term

these connections as links within rows of CMPGs. You may have noticed in the CMPG

that each pair in probe part of match-table is consistent i.e. a pair in probe will have

its corresponding consistent pair in the gallery. Formation of links in probe part of the

match-table is equivalent to formation of links in gallery part of the match-table. This is

a brute-force method since in a CMPG all the possible links are searched and grouped.

2.7 ForestFingers

In the previous subsection, we saw how links are formed within different rows in CMPGs.

It is important to understand what these connections mean in terms of fingerprints. When

we find connection between two rows of CMPGs, we actually find a path that connects

minutiae points on the fingerprint. Consider Figure 2.6. In this figure, minutia point 2
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was common between row 1 and row 2. This means that two edge-pairs formed from

minutiae points (1-2) and (2-6) had a connecting path between them. Same is true in

case of row 2 and row 3 of the example CMPG shown in 2.6. Thus, we have a small

cluster of connected minutiae points on fingerprints that have their relative distances and

angles matching (within certain tolerances). As the size of such connected components

goes on increasing, it would mean that more and more minutiae points have the distances

and angles between them matching exactly. This would be possible only if they were

actually same parts of fingerprint, which means that by traversing a path through entries

of CMPGs we are capturing local structure of the fingerprint, and as the size of the path

traversed increases, we are proceeding towards capturing significant amount of common

structure between probe and gallery fingerprints. It is also important to note that it is

possible that in different parts of CMPGs or across different CMPGs we might not find

a single connection that is big enough to capture entire fingerprint or all the fingerprints

(in case of slaps). However, as long as these connected component form clusters big

enough to capture “significant” amount of local structure, we should allow formation of

such clusters in different parts of fingerprints.

Here each row in the match-table can be viewed as vertex of a non-directed graph and

the links formed between the rows (as shown in 2.5) as edges of this non-directed graph.

Thus, the problem at hand reduces to finding maximum size sub-graph that is consistent in

terms of minutia assignment between probe and gallery. Finding connected components
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Figure 2.6: Formation of forests in a CMPG

in a graph has rich and long history in computer science, and it has been noted that many

methods for graph traversal like depth first search, breadth first search, mazes etc can

be used. However, we are not just interested in finding connected components, but at the

same time, merging two reasonably sized connected components to capture multiple local

structures across fingerprints. These operations an be performed efficiently with union-

find algorithm [18]. We term clusters of connected components as trees, and the set of all

such clusters as forests of trees.

2.8 Computation of Match Score

In biometrics, match-score quantifies the similarity between input and the database tem-

plate representations. In previous section we saw how clusters of consistent connected

components i.e. forests of trees are formed. We also noticed, how these clusters or trees

represent local structure of the fingerprint. However, there is also a very high possibility
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of matching random edges (i.e. small clusters were found to be matching) which might

be more of a chance than capturing actual similarity between fingerprints. Hence, we in-

troduce the notion of considering only those clusters that have at least a certain number of

edge-pairs connected to each other. Thus, in 2.6, the size of the tree is 3 (since 3 edges are

connected to each other). Higher number of such consistent connected components, more

local structure we would have captured in various parts of fingerprint (or across multiple

fingerprints in case of slaps). In order to compute the overall similarity between probe

and gallery image under consideration, we need a way to quantify a measure of similarity

from the matching local structure. For simplicity, we consider the total number of edge-

pairs across all CMPGs that are consistent with each other as the measure of similarity

between the two fingerprints. Hence, a match score M between probe pi and gallery gj

means that there were M number of matching-edges in probe and gallery fingerprint that

were completely consistent with one another (i.e. a minutia point in probe corresponded

to one and only one minutia point in gallery) and formed clusters of connected compo-

nents.
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Figure 2.7: The above image is an instance of ForestFingers applied on slap images from
NIST DB29. (to the left is probe image and to the right is gallery image for a true match).
Match-score is total number of edge-pair entries that form connected components (forests
of trees). The green points are the minutiae points (best if viewed in color), red lines are
pairs that were matched.
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Chapter 3

Evaluation of the Matching algorithm

3.1 About the Playground

We use NIST29 database [16] for our experiments. The database is made of paired finger-

print cards that include all ten rolled fingerprints and the plain/flat impressions. There are

two such sets of fingerprint cards (a*.an2 and b*.an2) for one individual captured at differ-

ent dates. The database has 216 paired fingerprint cards each scanned at 19.7 ppmm (500

ppi). The images are compressed using WSQ compression at a compression ratio of 15:1

and stored in the ANSI/NIST data format. The card consists of impressions of individual

fingers and also a four-finger impression (slap) of left and right hand per card. There

are 216 fingerprint cards for probe (a*.an2) and 216 fingerprint card for gallery(b*.an2).

Since, each fingerprint card has 2 four-finger impressions (left and right), our database
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consist of 432 images in probe side and 432 images in gallery side.

Before using our multi-fingerprint matching algorithms, we extract minutiae points

from the image using MINDTCT [3] and store them in minutiae files. The minutiae

files contain minutiae points in the form of (x, y, θ, q), where x, y are the position θ is

the orientation and q is the quality of the minutia point determined by the MINDTCT

algorithm.

3.2 Evaluation of ForestFingers

In order to evaluate our method, we performed experiments with ForestFingers on un-

segmented slap images and compared them with NIST Bozorth matcher applied on seg-

mented slap images. For getting performance of NIST Bozorth matcher (scores) on slap

images, slap images from NIST DB29 were first segmented using NIST’s NFSEG pack-

age followed by minutiae extraction process using MINDTCT. Each segmented individual

fingerprint from probe was compared with respective segmented fingerprint from gallery

(i.e. index finger from probe was compared with index finger of gallery to get score. Sim-

ilar process was carried out for remaining fingers and final score was addition of scores

from comparison all the fingers). For ForestFingers, minutiae points were extracted from

unsegmented slap image and ForestFingers algorithm was used for probe an gallery and

score was computed as discussed previously. The results of all the three experiments

mentioned above are summarized in figure 3.1 as receiver operating characteristic (ROC)
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Figure 3.1: ROC curve comparing NIST Bozorth Matcher on segmented images with
our ForestFingers algorithm on unsegmented slap images. In spite of not segmenting
the data, ForestFingers outperforms Bozorth Matcher. Performance of Bozorth Matcher
when applied on straight slaps degrades significantly indicating its dependence on costly
segmentation process

curve plotting the genuine accept rate (GAR) against false accept rate at various thresh-

olds.
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Chapter 4

New Directions: Cross finger Matching

4.1 Fingerprint, Privacy and Large Scale Identity Man-

agement

In the previous sections we discussed our approach of segmentation less multi-fingerprint

matching. However, the root cause for the said approach towards recognition was not

that of segmentation, but a much larger issue of privacy protection of individual in large

scale fingerprint based identity management systems. For large government program, it

is critical that they should be able to solve the de-duplication problem, to ensure one ID

per person. The big privacy problem is that all existing ways to searching for duplicates

also supports searching that database for whatever reason the system owner chooses. Just

function creep transformed, the social security number, into an identifier used and abused
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in ways never imagined when it was introduced.

There is growing privacy concern about biometrics [5] and there is is a rapidly growing

body of research developing techniques that convert the raw biometric data into secured

non-invertible tokens, with a wide range of techniques now developed including Tuyls et

al [6] Boult et al [7], [8], and Nandakumar et al [9, 4].

While these papers present important research, from a privacy point of view it is not

sufficient to just protect the template. One of the major fears is function creep, and the

potential for the data owner to use the data for other purposes. In particular for govern-

ment system, which is where the largest systems are being developed/deployed, a serious

concern is searching using latent or otherwise obtained fingerprint data to identify the

individual. While some argue that the only the guilty have to fear, a non-trivial concern

is false identification as in the widely reported case of Brandon Mayfield[10] who was

falsely imprisoned based on one latent print. Protected templates don’t solve that prob-

lem as they still provide for the system owner to “search”, which means they can still be

used to identify (or misidentify) by searching finger-by-finger through the DB for poten-

tial suspects. (Two approach ([7, 4]) provide for password enhanced “verification” only

approach, but they cannot be used for de-duplication. De-duplication inherently means

“recognition”, leading us to ask “is there a way to support de-duplication and yet ensure

the recognition data cannot not abused?”.
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4.2 id Privacy

id Privacy is formally defined in [?]. We provide mention the concept here for the sake of

completeness. id Privacy in the context of biometrics is defined as [?]

Definition 1. A recognition problem is said to have id-privacy when it impossible to use

the stored representation to recognize the subject, using only i − 1 items of input, with

probability d over random chance, but when when i or more distinct inputs are present

the subject can be recognized at substantially above chance. For simplicity in the ideal

case =. 0, we refer to this a id-privacy, e.g. if it takes 2 independent items to identify the

user at all, then we would call it (2,0)-id-privacy or simply 2-id-privacy.

When d = 0, this is not a statement about an algorithm, but of the problem and the

stored data – it must be the case that no algorithm can recognize using the stored data

and less than M inputs. This is in spirit quite similar to the secret sharing problem of

Shamir [11], but differs in that its not sharing data, but storing data for future recognition

and must deal with the approximate nature of recognition problems. This differs from,

and is much stronger than, the k-anonymity [12] and related privacy concepts in that we

require the recognition is no better than a factor of d above random chance, i.e. if d=0,

its full anonymity within the dataset. The focus here is on extremely ambiguities, where

it is better to talk about the fraction of the population, not a particular value of k. The

other important difference is that, we bound the amount of data the adversary has about
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the subject to be recognized. Our goal is balancing the ability to preserve privacy while

still supporting recognition.

For our problem we want to consider an “input” to be an image of a fingerprint, or part

thereof, and we want to ensure that with an image of a single finger (e.g. latent), the person

cannot be recognized at all, i.e. we want to ensure 2-id-privacy fingerprint recognition.

This paper presents an approach wherein data from slap-images are combined in such

a way that they can support de-duplication but such that any single-finger (e.g. latent)

cannot be matched at all. We also describe an extension that allows single fingers to be

used with a match-rate low-enough to make it impractical for anyone to use it that way.

4.3 Cross Finger Matching

Latent prints are partial prints collected usually from crime scenes and are very help-

ful cue for forensic investigations. These fingerprints are usually parts of fingerprints

left behind by a suspect. However, fingerprint identification algorithms are far from be-

ing perfect, and even the best performing automated fingerprint identification algorithms

have some false accepts even when they are operating at very low false accept operating

rates. In Brandon Mayfield case the important privacy issue was not that his fingerprint

already existed in records of FBI from 1984 burglary case in which he was involved, but

more importantly that with the help of latents, forensic investigators were able search an
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Figure 4.1: The above figure shows formation of forests of trees that span multiple fingers

existing fingerprint database. In the context of national ID programs, the key privacy is-

sue is that if the multi-fingerprint recognition proceeds in segment then match form, then

there is no way to restrict “searching” the database based on latent and it is solely at the

discretion of the database owner as to how to use it or “abuse” it.

With the above discussion in mind, two primary requirements of a large-scale multi-

fingerprint based identity management system: first it should allow the possibility of

duplication detection i.e. the system should answer the question with very high accuracy

as to is the person already enrolled in the database. It is important for a system like

National ID program, so that no individual is assigned more than one passport or similar

document. Another, more fundamental question is the issue of privacy, i.e. given a huge

National ID multiple fingerprint database, the database should not be used for any other
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purpose than it is meant to serve. What we need is a system that addresses two fold tasks:

the recognition system should be designed such that it is impossible or infeasible to search

a given fingerprint database with latent prints.

Now that we have introduced ForestFingers we can show how they can support id-

privacy. To implement 2-id-privacy, we choose the end-points of the pairs used to define

the pair table on separate fingers. Then to match the system will need at least two fingers

to define any of the pairs used for recognition. That definition presumed we can clearly

place data on different fingers, which suggests segmentation. However we can skip seg-

mentation by simply ensuring the minimum distance between the two minutiae in a pair is

greater than the maximum (or expected) distance between minutiae within a single finger.

The latter is the approach used for the experiment herein, where we uses distances that

span 2 or 3 fingers.

This approach of defining graphs of pairwise features, where each pair has elements

distinct elements of the i different data sources, can clearly be applied a much broader set

of algorithms, including across multi-modal biometrics and mixing biometric and non-

biometric data. The pairs need not be graphical elements, as we used herein, but could

also be condition pairs, where one elements defines a local transformation of the feature,

similar in spirit to how [4] used a password to mix the data.

One of the elements that must be addressed is how to make the pair-features con-

sistent and deal with noise. In the case of slaps the local image coordinate system and
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physical repeatability of close finger placements, provide that consistency. Some alterna-

tives would be, if there was consistent segmentation and reliable key feature localization

(e.g. core/delta), they could be used to align the sets of data to support pair features. And

for larger i levels of id-privacy , triangle or more complex subsets can be defined.

In order to test our hypothesis about 2-id-privacy we performed some initial experi-

ments on mixing data from multiple fingers. We term this approach as cross-finger match-

ing, i.e. using information from minutia points from different fingers and using relative

distances and angles to form forests of fingers. We would like to bring it to the notice

of the reader, that this approach is first of its kind and is by no means meant to be au-

thoritative. This study is meant to open doors in this direction, where data from multiple

fingerprints captured simultaneously can be used for matching and researchers should

consider such information when designing their own algorithms.

In analyzing the cross-finger recognition data, three things became apparent. First,

quality was having a significant impact significantly increasing false matches and their

scores. Second, there were considerably more high-scoring false matches than in the per-

finger matching. Thirdly, there were some false reject that have particularly low-scores.

We briefly discuss how these might be addressed.
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Figure 4.2: The above figure shows formation of forests of trees that span one and multiple
fingers. This approach is designed to help the cross-finger recognition, but at the same
time avoid matching with latents

4.4 One and Cross Finger Matching

With similar intentions in mind, we present another hypothesis: Mixing of data from

single finger and multiple fingers in a way that mixing of data from single finger can

only help in recognition and still avoid matching with latents. A thorough information

theorectic analysis is needed to validate how much amount of data from single finger can

be added so that to help recognition from cross fingers but still make it infeasible to match

with latents.
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4.5 Performance on latents

It is worthwhile to note the performance of cross fingers and one and cross fingers on

latents. In order to simulate this, we considered a segmented finger from NIST DB29

slaps as a probe (we consisder only index finger for initial experiments) and slap images

from NIST. Figure 4.3 summarizes the efforts in this direction. The data mixing approach

makes search with latents impossible (rather “infeasible”) at the same time maintaining

accuracy for slap matches. We agree that the accuracy rate for matching slaps with data

mixing approach is not usable in a real time system, but it definitely shows that we are

proceeding in the right direction. We also found that many more edge pairs are formed

when we are considering data from multiple fingers and hence only top 100 minutiae

points were used for the above experiments. It should be noted that this is first of its kind

approach and we expect people to build on top of this.

4.6 Effect of quality on matching algorithm

The quality issue is aggravated by the fact that this data was from scanned FBI fingerprint

cards and not a live-scan device. To help understand the issued we reprocessed the match-

ing using subsets of the data where we filtered on quality. We removed some extremely

bad images, and the 2 duplicates in the dataset and the 2 people where the images were
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Figure 4.3: The above figure shows a systematic comparison of ForestFingers on straight
slaps, and ForestFingers with data mixing enabled from multiple fingers. From the curves
it is evident it is infeasible to search with latents with the given representation. The True
positive rate does not increase
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not actually slaps but where each inked finger was applied separately (including having

duplicated fingers on the card). Then we processed for actual print quality. Unfortunately

the NFIQ program does not seem to measure quality of an slap image properly, so we

instead use NFIQ on each of the segmented images with the requirement that 3 of the

four slap fingers have a quality of X or better. This reduces the population and num-

ber of matching attempts. For quality 2,3,4 and 5(all) the resulting subsets allowed for

comparisons with Subjects/Total Matches of 40/12348, 129/52735,186/80914,209/90999

respectively. Figure 4.4 shows the ROC curves for cross-finger ForestFinger matching

results for different levels of quality.

The high-scoring false matches could be reduced by adding more descriptive fea-

tures to the minutiae. This paper uses basic features that would be computable with any

ANSI/ISO-standard fingerprint minutiae extractor. It is well documented that other, of-

ten proprietary, features can improve per-finger matching algorithms. It is expected that

the added features would more significantly improve cross-finger matching because of

the birthday-paradox effect (N-squared potential pairs significantly increase chance of an

unexpected match). These features may expose some information about the individual

suitable for latent matching, so some care would be needed in their design/usage. To

show the potential for this we added a small amount of local-neighborhood information

by allowing pairs with very short distances to be part of the forest information. This
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Figure 4.4: ROC curve showing performance of the 2-id-privacy mixed-finger approach
using ForestFingers. Because of the weak definition of features for pairs, this is more
significantly impacted by fingerprint quality. The curves shown are for different levels of
minimum quality, with each curve using only data with at least 3 fingers per slap having
the specified NFIQ quality or better. Also shown are cross-finger matching with one
per-finger local pairs.
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local per-finger information we no-longer have (2-0), as there is some potential for lo-

cal matching (which could be determined empirically for a real dataset). We note that if

one were to use the privacy enhancing transforms of [7], which can be applied to these

types of “pairs”, the modulus operation of the transform would reduce the large and small

distances into the same range and greatly increase the privacy element.

4.7 Study of Important Parameters

It is worth to mention what are the key parameters that are important for the results that

we mentioned. First of all the total number of minutiae points allowed for recognition

significantly affects the amount number of trees formed. Another important parameter

was the length of allowable distance spacing between minutiae points. We also found

that performance for forestfingers improved as the total number of availbale high quality

minutiae points increases, when we were matching forestsfingers on unsegmented slaps.

This is quite intuitive, since as more number of interest points are present in probe and

gallery simultaneously, we can find significant amount of local structure across different

fingers.

It is worth mentioning that some modifications like addition of “quality score” during

pair-table and match-table formation and then pruning selectively based on these quality

scores significantly affected the performance. The reason for this behavior is that forma-

tion of CMPG in forestfingers is a greedy process and high quality edge pairs if favored,
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Figure 4.5: The above figure shows effect on performance as we change prune tree thresh-
old. Performance is quantified in terms of equal error rate where smaller value mean better
accuracy. From the above experiments, it seems that prune tree threshold of 3 seems to be
optimal in terms of capturing enough local structure in case of true matches at the same
time discarding formation of random structure in case on non-matches
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gives consistent structure. In the final stage we consider only trees of significant sizes.

As we increased the pruning threshold for these trees, we found that high-quality true

matches weren’t affected much but high scoring false matches weren’t able to find con-

sistent structures. However, because of low quality nature of dataset, increasing prune

tree threshold also seemed to impact the overall performance. Fig 4.5 shows the effect on

performance as a function of prune-tree threshold of the three methods discussed above.
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Chapter 5

Conclusion

5.1 Contributions of the thesis

The contributions of this work are two fold:

1. This approach introduces a method for matching slap images without segmentation

without loss in accuracy. Though the performance is far form being deployed in

real world, the approach is promising and the work is very much in progress.

2. The second contribution of this work is that related to privacy. We introduced a

method of mixing data from multiple fingers, which allows us duplicate detection

but does not allow search of database based on latent prints. This idea would be

key for preventing function creep in large-scale biometric programs
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5.2 Conclusion and Future Directions

We showed how our approach solves 2-id-privacy, with ROC curves showing its accu-

racy. The performance is, admittedly, not yet as good as using per-finger features and not

sufficient for large scale de-duplication. The goal here was to define a problem and a new

model and show that has some potential. The early protected-templates research did not

provide sufficient performance to be of use, but continued research increased performance

and now there are multiple commercial products in that space.

To be effective, the approach needs to use more powerful features, to reduce false

pair matching, and probably could benefit from improved optimization during the forest

formation. We hope that this introduction will encourage biometric algorithm designers,

and even object recognition designers and the gurus of graph-cuts to join us in trying to

solve this important problem.
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