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CONTRIBUTIONS

1. Formal definition of “Open World Recognition”,
which extends the existing definition of Open Set
Recognition defined for static notion of set.

2. A recognition system that can continuously learn
new incoming categories in an open world model.

3. We show that thresholding sums of monotoni-
cally decreasing functions of distances of linearly
transformed feature space can have arbitrarily small
“open space risk”.

4. Open World Evaluation Protocol
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A solution to Open World Recognition is a tuple
[F, ϕ, ν, L, I]

1. F (x) is a multi-class open set recognition function
2. ϕ = [f1(x), . . . , fk(x)] vector function of per-class

recognition functions
3. ν(ϕ) : Ri 7→ [0, 1] is a novelty detector (to determine

if the class is known/unknown)
4. L(x) is labeling process applied to novel unknown

data
5. It(ϕ,Dt) is an incremental learning function to scal-

ably learn and add new measurable recognition func-
tions to ϕ

Ideally, all of these steps should be automated, but herein
we presume supervised learning with labels obtained by
human labelling.

DYNAMIC MULTI-CLASS CLASSIFICATION
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A recognition system in the “open world” has to contin-
uously update with additional object categories and be
robust to unseen categories and have minimum down-
time
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Our work lies at the intersection of scalable learning,
open set learning and incremental learning
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Let Open Space is the space sufficiently far from any
known positive training sample xi ∈ K, i = 1 . . . N , be
defined as:

O = So −
⋃
i∈N

Br(xi) (1)

Then probabilistic Open Space Risk RO(f) for a class y
can be defined as

RO(fy) =

∫
O fy(x)dx∫
So
fy(x)dx

(2)

Given an empirical risk function RE , the objective of
Open Set Recognition is to find a measurable recog-
nition function that manages (minimizes) the Open Set
Risk:

argmin
f∈H

{RO(f) + λrRE(f)} (3)

OPENING AN EXISTING ALGORITHM

Theorem 1: Open Space Risk for Model Combination

Theorem 2: Open Space Risk for Transformed Spaces

NEAREST NON-OUTLIER ALGORITHM

Nearest Class Mean Classifier: Assign an image i to the
class closest to the class mean by µk = 1

|Ik|
∑

i∈Ik xi. Then
class conditional probabilities are given by

p′(c|x) =
1

Z
exp(xTW TWµc + sc) (4)

where Z denotes the normalizer and sc is a per class bias.

Nearest Non-Outlier Algorithm: Let W ∈ Rd×m be the
linear transformation dimensional reduction weight ma-
trix (metric learning phase). Then given τ , let

f̂i(x) =
Γ(m2 + 1)

π
m
2 τm

(1− 1

τ
‖W>x−W>µi‖) (5)

be our measurable recognition function with f̂i(x) > 0
giving the probability of being in class.

EXPERIMENTS
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Experiment Details

1. Dataset: ILSVRC’10 (and ’12): 1.2M training images, 1K classes
2. Features: Dense SIFT features quantized in 1000 BoW
3. Algorithms: Nearest Class Mean Classifier, Nearest Non-Outlier

Algorithm, 1vsSet, Linear SVM
4. Training Phase:
• Parameter Learning with initial set of categories, followed by

estimation of τ to balance open space risk
• Incrementally add categories

5. Testing Phase: Test with known and unknown categories
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INCREMENTAL CATEGORY LEARNING
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