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Abstract—Balancing privacy and security concerns in biomet-
ric systems is an area of growing importance. While important
work has gone on in template protection and revocable biometric
tokens, these avenues of research address only one aspect of
the problem. Such research does not address a critical issue:
balancing the need government and anti-fraud programs to
do deduplication (ensure one identity per person) against the
potential for abuse using that data. Any existing system capable
of deduplication, even if using a template protection scheme,
would allow function creep or abuse by searching with latent
prints.

This paper introduces the concept of id-privacy, requiring at
least i items (e.g. fingers) to be provided to resolve identity to
better than d above random chance. We show how using cross-
finger representation on unsegmented fingerprint slap data, we
can address what may be the single most important “privacy”
issue in biometrics, privacy enhanced deduplication. We prove we
can achieve (2,0)-id-privacy for fingerprint-based deduplication
while preventing searching with a latent print.

We introduce the Forest Finger algorithm – an approach for
matching unsegmented slaps and cross-finger representations.
Our results on the largest public slap database shows superior
accuracy when compared with existing NIST Bozorth matcher
when tested on unsegmented slaps, segmented prints or fused
rolled prints.

I. INTRODUCTION

There is a growing concern about privacy in biometrics [1].
A critical issue in biometrics is the development of technology
that allies the privacy concerns while supporting the security
goals. A partial solution is to never store the original biometric,
but rather only a cancellable or revocable token generated
from it. This concept was introduced by Ratha et al [2], called
cancellable biometrics. There are a wide range of techniques
that convert the raw biometric data into privacy/security en-
hanced tokens, including Tuyls et al [3] Boult et al [4], [2],
Nandakumar et al [5], [6], and Dodis et al [7]. Recent work
in this area has show viable, albeit not world class, accuracy
in revocable biometrics [4], [8] for single prints. However,
these works still miss an important privacy/security problem in
biometrics. This heretofore unaddressed fundamental problem
with large scale biometric systems is the privacy/security

Thanks to NSF STTR 0750485 (Improving Privacy and
Security of Biometrics Systems), NSF PFI 0650251
(ISEE:Innovation through Synergistic Entrepreneurial
Education)
WIFS’2010, December 12-15, 2010, Seattle, WA, USA.
978-1-4244-9080-6/10/$26.00 c©2009 IEEE.

impact of supporting search in large scale identity systems. For
many government programs, or anti-fraud projects, it is critical
that the system owner be able do deduplication, ensuring one
ID (identity) per person.

One privacy/security concern is that all existing ways of
searching for duplicates also support searching for whatever
reason the system owner chooses, enabling abuse and function
creep. Recall the function creep that transformed the US social
security number from an database (DB) identifier for social
security into a widely used identifier abused in ways never
imagined when it was introduced. Furthermore, once a DB
with unique and searchable identifiers is hacked, the ability of
attackers to use it after that security breach presents serious
security concerns.

Some people may think that biometrics provide a truly
unique identifier, but biometric recognition is far from perfect.
There has been significant progress in both minutiae and
ridge based fingerprint matching systems. A detailed survey of
existing methods for single fingerprint matching can be found
in [9]. However, automated systems are still quite prone to
errors. The best fingerprint systems tested by US government,
when using 2 fingers, have only 98% true accept rate when
set to reject 99.99% of false matches. This brings us to a
second security/privacy concern. With non-zero FAR, given
a searchable database of millions of records, a doppleganger
attack (a.k.a biometric dictionary attack) is possible, allowing
an intruder to find a few “close enough” matches so that they
can directly impersonate them [4]. Since biometrics do not
change significantly over a lifetime, the Biometrics Dilemma
([4]) is that while biometrics can initially improve security, as
searchable biometric databases become widespread, compro-
mises will ultimately undermine biometrics role in security.
This is the first paper addressing the important problem of
supporting search while still enhancing privacy and dedupli-
cation, and can easily be extended to support revocation.

The paper has the following contributions: 1) We formally
define the problem of id-privacy 2) Building on top of existing
single-fingerprint recognition algorithm, we show how a cross-
finger representation on unsegmented data can be used to
address id-privacy for deduplication. 3) We experimentally
demonstrate, on the largest publicly available slap dataset, that
multi-fingerprint recognition/deduplication can be achieved
without loss of accuracy.



Fig. 1. Example matching Slap Image from NIST Special Database 29 [13],
with the sub-regions detected by NIST slapseg overlaid in red.

II. id-PRIVACY

Multi-fingerprint capture or slap capture (figure 1), is
becoming more and more popular in large scale identity
management systems like US and UK immigration checks.
Vendors have followed the path of segment-and-match, where
the multiple fingerprints are first segmented and then matched
as in traditional single fingerprint recognition [10]. Although
this approach is favorable from a backwards compatibility
point of view, it makes it very easy for doppleganger attacks,
discussed earlier. Even though cancellable biometric methods
address the issue of data protection, from a privacy point of
view, it is not sufficient to just protect the template. One of
the major fears with biometric data is potential abuse and
function creep i.e. the data owner could use the data for other
purposes than originally intended. In particular, for govern-
ment systems, which is where the largest biometric systems
are being developed/deployed, a serious concern is searching
fingerprint databases with latent prints from crime scenes or
otherwise obtained fingerprint data to identify individuals.
While some may argue that only the guilty need to fear, that
view ignores issues such as the use of government fingerprint
data for producing fake data and planting them at a crime
scene [11] and even broader issues of misidentification, as in
the widely reported case of Brandon Mayfield[12] who was
falsely imprisoned based on a search finding a possible match
to one latent print at a bombing scene and subsequent FBI
examination.

Protected templates don’t solve the problem as they still
allow for the system owner to “search”, which means they
can still be used to identify (or mis-identify) an individual by
searching finger-by-finger through the database. Two previous
approaches ([4] [6]) address the search concern by providing
password enhanced “verification” only techniques. Because
these models inhibit searching, they cannot be used for dedu-
plication.

Deduplication is a justifiable security criterion and inher-
ently requires “recognition” and searching the database. This
leads us to ask “is there a way to support deduplication and yet
ensure that recognition data may not be abused in searches?”.
This is similar in some respects to the secret sharing problem
of Shamir [14], which seeks perfect security below a threshold
and full knowledge above it. Our definition must deal with the
approximate nature of recognition problems and is formalized
as:

Definition 1: A recognition representation is said to have

id-privacy when using only i-1 items for the search input,
the stored data cannot identify subjects with probability
d greater than random chance, yet when i or more
distinct items are present, the subject can be recognized
at substantially above chance.

This is a statement about the representation – i.e. for d = 0
no algorithm can do recognition with less than i inputs. For
d > 0 algorithms/experiments can provide an approximate
lower-bound on d. When i and d are known, they are used as
a prefix i.e. if it takes 2 independent items to identify the user
and d = 0, then we would call it (2,0)-id-privacy or simply
2-id-privacy.

This differs from, and is stronger than, the k-anonymity
[15], l-diversity and related privacy concepts. We require that
with the less than i identity items, the recognition is no better
than a factor of d above random chance, independent of the
DB size, but identity is resolvable with i or more factors. Note
for d = 0, it is full anonymity. For a general setting the level
of privacy protection of the two models can be related; in
a database of N people, k-anonymity relates to d = k

N . For
biometric recognition, probability above random chance scales
well with population size; a particular constant k does not. The
more important difference is that our goal is balancing the
ability to preserve privacy while still supporting recognition.
We bound the amount of data the adversary has about the
subject to be recognized but require that adding one more
piece of information resolves the ambiguity. Obviously the
data model needs to be well matched to the actual problem.

Traditional multi-factor solutions do not provide meaningful
levels of id- privacy because they store the factors separately
and simply combine the results of matching on each. More
recent bio-cryptographic approaches such as [4] [6] mix the
biometric and the password into an inseparable token and
can be said to provide (2,0)-id-privacy as they require both
the fingerprint and the password to be present. Without the
password they are effectively random chance for identification.
Unfortunately, the data model of these approaches is not useful
for privacy protecting deduplication because the system owner
would need passwords for each token to search for duplicates.
With the passwords, the system owner could effectively use
one or more latent prints for searching.

III. CROSS-FINGER AND FOREST-FINGERS

Our goal is privacy-protecting deduplication using only
biometric data, where a latent cannot be used for searching or
matching. In our specific problem, we are considering features
computed from standard slap images or parts thereof. We want
to ensure that with an image of a single finger (e.g. latent),
the person cannot be recognized, i.e. we seek at least 2-id-
privacy. To do this we introduce the idea of a cross-finger
representation which uses features inherently drawn from
different fingers. We can also combine cross-finger features
with some local features.

A slap image contains crucial information on spatial rela-
tionships of features from adjacent fingers. Hence an approach
is desired that allows formation of sub-graphs not just within



Fig. 2. Left show Forest-Fingers for “within finger” matching on A090 13 from NIST DB29. The lines are minutiae pair features that were matched to a
pair in gallery. The middle images shows a portion of the Forest-Fingers for cross-finger matching to support 2-id-privacy. The right image is the cross-finger
(blue) with small local features (in red). Note that all start from the same minutiae points, but have different rules for allowed edges.

a single finger but also across multiple fingers in order to
support cross-finger representations for id-privacy. No existing
fingerprint matching algorithm was designed to do this.

For directly matching slaps, we expand upon the NIST
Bozorth fingerprint matcher [16], which uses a minutiae-pair
representation and builds a graph of matched pairs. Existing
algorithms, such as Bozorth, are designed to match a single
fingerprint from probe with a single fingerprint in gallery. It
is common to attempt to find the largest connected set of
matching features between the probe and gallery. When a
single fingerprint matching approach like Bozorth is applied
on an unsegmented slap image, it generally finds a single
matching finger between the slaps and ignores all other fingers.
For matching slaps, the approach should support formation of
multiple matching connected components as a set or forest
of trees/graphs. In Forest-Fingers, we form a forest of trees
of minutiae pairs, where the size of these forests defines the
match-score between two slap or fingerprint images. We use
minutiae pairs because they are translation/rotation indepen-
dent.

We briefly explain the matching process, the first part of
which closely follows [16]. From the slap images for the probe
and gallery, we extract minutiae points, (x, y, q, θ) where
(x, y) is the position of minutia point in fingerprint image, θ is
the orientation angle of the ridge at minutia point and q is the
NIST quality of the minutia point. Based on list of minutiae
points, an intra-fingerprint pair table is formed. A pair table
contains the distances and angles between pairs of minutiae
points within a fingerprint image. Each pair of minutiae
points is represented by the pixel distance between the two
minutiae points, the relative angles between the two points and
minimum of the quality between the two minutiae points. Pairs
with distances outside an allowed rage are discarded. When the
pair table formation is completed, each entry in the pair table
consists of {dkj , β1, β2, k, j, θkj} where dkj is the relative
distance, β1, β2, θkj are relative angles and k, j are indices
of the minutiae points under consideration. For further details
on computation of distances and angles, the reader is advised
to check [16]. The entries in the pair-table of the probe are
compared with entries in the pair-table of a gallery to form a

match-table with potentially matching entries with differences
in distance and angles within certain tolerances. Each entry in
the match-table contains matched edges, represented indices
of pairs in probe and gallery (p1, p2, g1, g2). If the edge
corresponds to a true match, then the pair p1, p2 would
correspond to the points g1 and g2 respectively. The match-
table holds all possible pairs, and is generally not a consistent
set.

Input: matchTable (of pairs as in Bozorth)
Output: matchScore
foreach row i in matchTable do

find all rows consistent with i that is create CMPGs
foreach row j in each CMPG do

find all pairs that form edge with row j
end
foreach each edge-pair formed in CMPG do

if edge B ε same tree as edge A then
union(edge A, edge B)
parent[B] = A

end
end
foreach forest do

if no. of vertices in tree k > pruneThreshold then
consistentForests+ =

totV ertices(tree(k))
end

end
end
matchScore = size(consistentForests)

Algorithm 1: The forest-finger matching algorithm

The next task, and where we differ from Bozorth, is to
divide the match-table into consistent subgroups. Bozorth
searches for the largest consistent web; we build the largest
consistent forest. Algorithm 1 presents an overview of this
stage of the Forest-Fingers approach. The first step is Consis-
tent Minutiae Pair Group (CMPG) formation. In this process,
the match-table is divided into multiple groups of entries
of rows such that within each group there is a unique cor-
respondence between a minutia point in the probe match-



table and the corresponding minutia point in gallery (i.e pi
corresponds to only one gj). Each consistent minutiae pair
group is a collection of consistent assignments between probe
and gallery minutiae points. Another way to view minutiae
pair groups is as collection of vertices (match-table entries)
in a graph. Two vertices are considered connected if there is
a common minutia point between two vertices (match-table
entries). The problem now reduces to finding connections
within these vertices to form a set of undirected graphs, where
the vertices represent the match-table entries (and in turn pairs
of minutiae points). Geometrically, the edges represent relative
distance-based local structures and collections of such edges
are trees/graphs that represent global structure of minutiae. On
a slap, disjoint-set forests are an excellent way to represent this
problem, where find operation can be used to check whether
a new vertex belongs to a tree and union operation can be
used to merge trees into disjoint-set forests. A collection of all
such forests is the representation of the fingerprint slap image.
The match-score is the number of vertices in the forest, i.e
total number of vertices that form consistent connected graphs
within the set of minutiae. While this might seem, at first, to
be quadratic in E (number of pairs), the processing is done
walking through mutually sorted lists with constant distance
requirements, not exhaustive scanning for pairs, so its cost is
dominated by the sorting, i.e. O(E logE).

One of the issues that must be addressed is to make the
pair-features stable across images while dealing with noise.
In the case of slaps, the local image coordinate system and
physical repeatability of close finger placements provide that
stability. Without slaps an alternative would be to use con-
sistent segmentation and reliable key feature localization (e.g.
core/delta), to align individual fingerprint images to support
pair features. An even more aggressive approach would be
segmentation and then optimization over possible alignment
parameters.

This approach of defining cross-finger matching. i.e. using
features constructed from distinct elements of the i different
data sources, can clearly be used in a much broader set of
algorithms and data. One could use pairs between features in
other modalities, e.g. feature points between two independent
irises. One could also extend it to cross modality data, e.g.
points in thermal and visible imagery, or iris points and
eye/retina veins or fingerprint minutiae and finger veins. The
pairs need not be graph edges, as we used herein, but could
also be conditional or functional pairs, where one element
defines a local transformation of the feature, similar to how
the [6] uses a password to mix its minutiae data.

IV. PROOF OF id-PRIVACY FOR CROSS-FINGERS

In this section we show how Forest-Fingers can be used to
support id-privacy. To implement 2-id-privacy, cross-fingers
uses the end-points on separate fingers. As described above,
let the model for “items” be single finger images, with the
deduplication process taking slaps as input. Assume input with
m ≥ 2 fingers. Create cross-finger forests, where each edge
uses data from two separate fingers among the m input fingers.

Recall 2-id-privacy requires two properties, which we now
show hold for this model.

Property 1: no recognition from single finger input: Given
images/minutiae from one finger (i.e. (i − 1) inputs), it is
impossible to generate correct pairs that match a significant
fraction of the stored pairs since no data about the second
finger is known. An adversary could generate random data
or use dictionary prints to forms pairs, but such pairs would
not be consistent with the subjects print. Hence randomly
choosing an subject index, the most effective attack produces
performance at random chance. Thus d = 0.

Property 2: 2 or more inputs matches above random chance:
Assume 2 or more finger inputs each of which have overlap
with a subject’s gallery images. Then valid cross-finger fea-
tures can be formed in probe and gallery. Because there is data
overlap, the pair matching will be better than random resulting
in a probability of recognition substantially above chance. If
the number of minutiae pairs is small, the recognition level
maybe only slightly above random chance. Increasing pair
counts improves the recognition rate. Even if the 2 fingerprint
images are not from a slap, an algorithm can test multiple
alignments and optimize over the alignment space to produce
matching results above random chance.
Q.E.D.

We have described and tested pairs. However, the concept
is clearly extendible to triples or n-tuples of data being used
as the primary representation. E.g. with triples (effectively
triangles as in [17]) can be used which could then require
at least 3 fingers to be presented. There is security/usability
tradeoff here, as it could mean that someone that looses 2
fingers on a hand would no-longer be matchable by the system.
Another practical issue is that the number of pairs grows with
the square of the number of minutiae, while the number of
triangles grows with the cube.

V. EXPERIMENTS

We performed experiments with Forest-Fingers on unseg-
mented slap images and compared them with NIST Bozorth
matcher on both segmented and unsegmented data. We eval-
uate on NIST DB29 [13] which is, to our knowledge, the
largest publicly available dataset of fingerprint slap images.
The database contains slap images from 216 individuals (214
distinct), with probe and galley taken at two different in-
stances. Each collection is a 10-print card, with slap prints
from left and right hand giving a total of 432 slap images
each in of the probe and gallery sets. For segmented data, we
used NIST’s NFSEG package followed by minutiae extraction
process via MINDTCT [16]. When using segmented data, each
probe fingerprint sub-image was compared with its respective
fingerprint sub-image from the gallery (i.e. the index finger
from probe was compared with the index finger of gallery).
The final score was the sum of scores from the comparison
of all fingers, i.e. sum-score fusion over all segmented fingers
was used.

For slap matching, minutiae points were extracted from the
unsegmented slap image with identical data fed directly into



Fig. 3. ROC curve comparing NIST Bozorth Matcher on segmented images
with our Forest-Fingers algorithm on unsegmented slap images. In spite
of not segmenting the data, Forest-Fingers outperforms Bozorth Matcher.
Performance of Bozorth Matcher when applied on straight slaps degrades
significantly indicating its dependence on segmentation and inability to
address cross-finger matching.

the matching algorithms. Bozorth parameters were changed to
accept the larger number of points and greater range of data
needed for the slap data. Forest-Fingers algorithm was used
for probe and gallery and score was computed as discussed
previously.

The results of all the three experiments mentioned above
are summarized in figure 3 as receiver operating characteristic
(ROC) curve plotting the genuine accept rate (GAR) against
false accept rate (FAR) at various thresholds.

Cross-Finger Matching: In order to show the viability
of 2-id-privacy, we performed some initial experiments on
cross-finger data, with pair endpoints on different fingers.
This can be done either using segmentation or by ensuring
the minimum distance between the two minutiae in a pair is
greater than the maximum distance between minutiae within a
single finger. The latter is the approach used for the experiment
herein allowing pairs to span 2 or 3 fingers and sidestepping
the need for segmentation. This cross-finger representation
matched with Forest-Fingers is the first of its kind and we
do not claim it to be the definitive or optimal way to provide
2-id-privacy. Still, the data shown in figure 4, is promising.

In analyzing the cross-finger recognition performance, three
things became apparent. First, poor quality prints were signifi-
cantly increasing false matches and their scores. Second, there
were considerably more high-scoring false matches than in the
per-finger matching. Thirdly, some false rejects had particu-
larly low-scores, in part because of finger movement between
slaps. We briefly discuss how these might be addressed.

At first the dependence on quality might sound like a dis-
advantage, but modern optical scanners used in deduplication
generally produce high-quality images. The fact that latents
are almost always low quality means this dependence will

Fig. 4. ROC curve showing performance of the 2-id-privacy crossed-finger
approach using Forest-Fingers. Because of the weak definition of features
for pairs, this is more significantly impacted by fingerprint quality, making it
more difficult to use even if there were latent slaps. The curves shown are
for different levels of minimum quality, with each curve using only data with
at least 3 fingers per slap having the specified NFIQ quality or better. Also
shown are cross-finger matching with a small amount of local-finger pairs,
which results in (2,.04)-id-privacy.

actually improve privacy while allowing digital image-based
deduplication. (The quality issue is aggravated by the fact that
this data was from scanned FBI fingerprint cards and not a
live-scan device so deduplication performance may be even
better.) To help understand the impact of quality, we ran new
experiments using subsets of the data where we filtered on
quality. We also removed the 2 duplicates in the dataset and
the 2 people where the images were not actually slaps but
rather where the person repeatedly applied the same finger
instead of a 4-slap. Then we processed for actual print quality.
Unfortunately the NFIQ program does not seem to accurately
measure quality of an slap image, so we instead used NFIQ
on each of the segmented images with the requirement that
three of the four slap fingers have a quality of X or better.
This reduces the population and number of matching attempts.
For quality 2,3,4 and 5(all) the resulting subsets allowed
for comparisons with Subjects/Total Matches of 40/12348,
129/52735,186/80914,209/90999 respectively. Figure 4 shows
the ROC curves for cross-finger Forest-Fingers matching re-
sults for different levels of quality.

The high-scoring false matches could be reduced by adding
more descriptive features to the minutiae. This paper uses
basic features that would be computable with any ANSI/ISO-
standard fingerprint minutiae extractor. It is well documented
that other, often proprietary, features can improve per-finger
matching algorithms. These features may expose some infor-
mation about the individual suitable for latent matching, so
some care would be needed in their design/usage. To show
the potential impact of local information, testing allowing a
limited number of pairs within a single finger (with distances
only up to 75 pixels) to be part of the Forest-Fingers infor-
mation. With this local per-finger information we no-longer



have (2-0)-id-privacy, as there is some potential for local
matching. Attempting to match rolled prints (also in NIST
DB29) against the cross+local information, the EqualErrorRate
decreased to 46% from the random rate of 50%. Thus one
might say this cross-fingers with local information approach
achieves approximately (2,0.04)-id-privacy while substantially
improving the overall recognition rate at low FAR.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a new formal model: id-privacy. The
algorithm/experiments herein show the first solution to one
of the most pressing privacy problems in large-scale
identity biometrics: how to allow automated detection of
duplicates while ensuring it cannot be abused by using a
latent to search for people. This paper also introduced id-
privacy as a model for this important problem. We showed
how our approach solves 2-id-privacy, presenting ROC curves
showing accuracy tradeoffs. The performance is, admittedly,
not yet as good as using the best known algorithms. However,
remember that deduplication only needs to be done once. The
goal here was to formalize the problem and develop a new
model and algorithm that shows potential. The early protected-
template research did not provide sufficient performance to be
of practical use, but continued research increased performance
and now there are multiple commercial products in that space.

This paper introduced Forest-Fingers for direct slap match-
ing, showing how simultaneous matching can improve multi-
fingerprint matching. We demonstrated improved accuracy on
the NIST standard dataset against the NIST baseline algorithm.
The increase is largely because the errors in segmentation
do not propagate to limit the slap matching, which means
the concept should improve other matching algorithms as
well. It is important to note that we are not presenting here
a definitive slap fingerprint recognition approach. There are
many other fingerprint recognition algorithms that perform
better than Bozorth matcher on single fingerprint recognition.
Bozorth was chosen as the the best performing open-source
fingerprint recognition algorithm, simplifying comparison. It is
known that the best performing matchers use features beyond
simple minutiae location, and the Forest-Fingers approach
could easily be extended to handle such information. If the pair
end points were more descriptive of their local neighborhood,
e.g. using minutiae descriptor features as mentioned in [18], it
would reduce false pair matching, and could definitely improve
results.

The paper introduced the cross-finger representation as
one means of achieving id-privacy. We believe that many
fingerprint algorithms could be extended with concepts based
on Cross-finger data and Forest-Fingers to fuse information
from multiple fingers to provide id-privacy.

There are some elements of both practically and privacy
that have not yet been discussed, but form an important part
of our planned future work. The first is applying a privacy-
enhance transform and template protection scheme to the slap
“pairs”. While it is unknown if these cross-finger pairs could
be used to construct an approximate fingerprint, the privacy

enhancing transforms of [4], [8], can be applied to these
types of “pairs”, with the latter has the added advantage
of allowing key embedding. The key embedding could then
be used to enhance the actual deduplication processing by
allowing human comparison of actual images to distinguish
difficult cases. If the images are protected by person-specific
encryption keys, then if there is sufficient matching, i.e. a
potential duplicate, the system could decrypt the images for
secondary processing. The system owner does not need to keep
keys, potential duplicates would match well enough to release
the needed keys!

Finally, if during enrollment (i.e when submitting for dedu-
plication) a verification only privacy-enhanced biotoken which
permits deriving new tokens from its the base enrollment ([8])
is linked to the ID, then we can finally have a “biometric-
based” ID (identity management) system with moderate pri-
vacy/security protection that still supports rapid 1-1 secure
revocable verification tokens. We hope that this introduction to
the problem of privacy-protecting deduplication will encourage
biometric designers to join us in trying to build practical
solutions to this important problem.
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