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Abstract

Face recognition in unconstrained environments is one
of the most challenging problems in biometrics. One vexing
problem in unconstrained environments is that of scale; a
face captured at large distances is considerably harder to
recognize than the same face at small distances. Several
methods have been proposed to tackle unconstrained face
recognition in a robust fashion, including face descriptors
such as LBP and its many variations, of which some are less
sensitive to scale variations than others. In this paper, we
present a novel operator called General Region Assigned to
Binary (GRAB), developed as a generalization of LBP. We
demonstrate its performance for face recognition in both
constrained and unconstrained environments and across
multiple scales. Unlike prior work, the GRAB descriptor
accounts for multiple scales and resolutions through the
size and choice of its neighborhood and is evaluated with
respect to varying scales. We show that GRAB significantly
outperforms LBP in cases of reduced scale on subsets of
two well-known published datasets of FERET and LFW, in-
troducing useful subsets of these datasets for recognition
system evaluation.

1. Introduction

Face recognition has been one of the most commonly used
biometrics for recognition and verification, because of its
ease of acquisition, availability and its strong performance
in the constrained environment and with frontal faces. How-
ever, in the unconstrained environment, face recognition
still poses a lot of challenges due to changes in scale, the
face’s complex 3D structure, and motion, as well as other
environmental variables like atmospheric blur and illumi-
nation. One of the challenges in face recognition is the ex-
traction of features which are sufficiently discriminative in
addition to being invariant to the aforementioned variables.
This paper addresses one of these key elements: the impact
of varying scales on face recognition.

Figure 1. Example of our problem combining scaling issues with
challenges in face recognition in uncontrolled environment, using
images from the Labeled Faces in the Wild (LFW) Dataset. From
left to right: Original images from LFW dataset, face images of the
subject in different sizes. Beyond the challenges of pose and light-
ing we explore the challenge due to the large variation in the scale.
We show down-sampled images of sizes 52x60, 39x45, 26x30 and
13x15 respectively. These, plus the original face region of about
130x150, are the scales we have used in our experiments.

As a motivating example, consider the use of face in
facility protection or surveillance system, such as that de-
scribed in [7] The authors describe a system for cataloging
faces and relating identity and location, which clearly must
work over a wide range of scales. Scale is critical in uncon-
strained face recognition since, in general, subjects may be
at different distances from the camera and the difference be-
tween a subject at 4 feet and one at 40 feet is a 10x change in
scale/resolution. In Figure 1, we show two example images
and a range of scales, equivalent to a 10x range of scales.

A lot of work has been done in the past in describing
meaningful and distinctive features from images for object
recognition. Scale Invariant Feature Transform (SIFT) is a
popular method in object recognition [13, 12]. They ex-
tract the features of an image using the key points that are
invariant to scale change. To detect such key points, they
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search the stable features across all possible scales using a
scale space and such key points are associated with loca-
tion, scale, and orientation information. To define the lo-
cal image features, they sample the local image intensities
around the key points at the appropriate scale of the key
point. Bicego et al. used SIFT features for authentication in
[2] whereby they used the distance between all pairs of key-
point descriptors in the two images to define the matching
score. For face authentication, this type of algorithm was
not as successful as other object recognition problems using
SIFT-like features. Unfortunately, the planarity assumption
underlying the theory of SIFT features and the highly-non-
planar and self-occluding nature of faces result in weak per-
formance on face recognition tasks. In [9], SIFT features
are combined in a mixed local-global strategy supporting a
recognition-from-parts approach to address occlusion.

Local Binary Pattern (LBP) is another operator which
was originally used to extract a texture based description
from imagery and is widely used in face recognition. The
operator assigns a label to every pixel of an image by thresh-
olding the 3x3-neighborhood of each pixel with the center
pixel value and considering the result as a binary number
[1, 21]. The pixel level features thus obtained are com-
bined in the form of histograms in various ways to gener-
ate the global features for the face description. LBP has
been one of the best performing descriptors as it contains
the micro-structure as well as macro-structure of the face
image. Despite its popularity, there are a number of short-
comings in the LBP approach, including sensitivity to noise,
scale changes, and rotation in the image.

Prior extensions to produce “multi-resolution” LBP [14],
simply use a larger neighborhood “circle”, but still sample
the raw pixels on that circle. While it does consider pix-
els at greater distances, sampling does not properly model
changes in resolution or scale, which result in pixels being
combined and not sampled. Consider what happens on a
region with a fine binary texture, where sampling chooses
from one of the two binary colors, but changes in scale ac-
tually mix the values into new shades/colors. In [11], this
multi-resolution LBP is combined with novel color repre-
sentations which combine RGB, YCbCr, and YIQ color
spaces. The results did improve performance on FRGC
data, but that does not not actually contain multiple reso-
lutions so sampling artifacts in color space would impact
those experiments.

More recently, studies have introduced the concept of a
Multi-scale Block Local Binary Pattern (MB-LBP) to pro-
vide a more robust operator than LBP [10]. In MB-LBP,
the average sum of image intensity is computed in each sub
region around a center sub-region. These average sums are
then compared with the center block. They note that “MB-
LBP can be viewed as a certain way of combination using 8
ordinal rectangle features”. While MB-LBP does improve

recognition by representing a mixture of micro-structure a8
well as macro-structure of the image pattern, they did not
study the impact of scale but rather focused on improving
recognition at a fixed scale. To do this, they increased the
operator dimensionality for a given resolution and redefined
the sampling used, introducing the concept of Statistically
Effective MB-LBP (SEMB-LBP) based on the percentage
in distributions, instead of the number of 0-1 and 1-0 tran-
sitions as in the uniform LBP. They train a mapping from
their MB-LBP data to a reduced set of 63 indices on FRGC
data, then they use Ada-boosting to learn a 2-class classifier
for matching (same identity) vs non-matching faces. They
test on FRGC experiment 1 and 2, which contains all high-
resolution frontal faces with more than 4x-400x pixels on
faces compared to the experiments herein. They outperform
a standard LBP operator, but did not perform as well as the
best performing algorithm. Multiple scales is not consid-
ered in their paper.

LBP features have also been used in the past for face de-
tection. [6] considered LBP features as a facial representa-
tion and build a face detection system using SVM as a clas-
sifier. This idea was recently extended to Multi-Block Local
Binary Pattern features for face detection. [20]. But in real
time face recognition systems, a face if detected should be
able to be recognized as well and the scale of images plays
a huge role here.

Due to the peculiarities of the face shape and variabil-
ity of several aspects of the face, the face recognition prob-
lem is different from the other object recognition problem.
Some of the previous works used the combination of local
as well as global representation of the face descriptors to
solve this problem. Multi-resolution Histograms of Local
Variation Pattern (MHLVP) [22] is one such method which
described face images as the concatenation of the local spa-
tial histogram of local variations patterns computed from
multi-resolution Gabor features.

While we will show the effectiveness of GRAB, like
other multi-resolution approaches, there is likelihood that
it will suffer the curse of dimensionality. There are tech-
niques for reducing dimensionality, for example Chan et al.
[4] uses subspace techniques of LDA to help reduce the di-
mensionality of standard MLBP, while maintaining or in-
creasing the accuracy of the added dimensionality. In terms
of added accuracy they argue that “However, by directly ap-
plying the similarity measurement to the multi-scale LBP
histogram, the performance will be compromised. The rea-
son is that this histogram is of high dimensionality and con-
tains redundant information”. While Chan et al. show im-
pressive results, in this paper we GRAB rather than MBLP
to avoid sampling issues and will use SVMs for recognition
which remove the redundancy in a different, and generally
more effective way. And again, our focus is on addressing
recognition under scale changes, not just improving recog-
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nition rates. However, future work may explore their ap-
proach for dimensionality reduction and study it with re-
spect to scale changing.

Gabor features are another interesting set of features
which are highly applied in face recognition [18, 17]. The
gabor representation of face images incorporates multi-
scale feature extraction. The Gabor wavelet representation
of an image is the convolution of the image with a family
of Gabor wavelets at different scales; for example, Pinto et
al. present a V1-like algorithm that considers 96 different
Gabor filters. Local features are represented by the coeffi-
cient set, or Gabor jet, which orders the convolution results
at different orientation and scales for a particular point. For
face recognition using Gabor features, the gabor jets are ex-
tracted from a predefined set of points on the face images.

In this paper, we present a new description of facial im-
ages, which combines micro-structure and global structure,
as well as the structure at multiple scales of the face im-
ages. We call this operator General Region Assigned to Bi-
nary (GRAB) and use these features for facial recognition
in images of varied scales and resolution. As shown in Fig-
ure 1, face images captured in the wild have varied scales.
It is also interesting to mention that our GRAB-based face
recognition performs very well even with the smallest scale
image shown in Figure 1.

2. General Region Assigned to Binary (GRAB)

GRAB (Generalized Region Assigned to Binary) is devel-
oped as a basic operator for neighborhood modeling of
a pixel. For the simple GRAB operator, with neighbors
7 = 1...n, we let c stand for the center pixel and j for
the actual neighbor pixel. For each pixel ¢, we can define
the generalized binary representation as:

GR(c) = gj(c,j) - - ()
j=1

where GRAB is the same as the standard LBP iff

95 (pe;spj) = (pe > pj) (2)

In the standard LBP pattern, the neighboring pixel is de-
fined a label, O or 1 comparing its value with the center
pixel value. If the neighboring pixel is greater than the cen-
ter pixel value then a label 1 is assigned to it. But with the
GRAB operator we define a threshold, whereby, if the dif-
ference in the neighboring pixel value and the center pixel
value is more than the threshold, the neighboring pixel is
assigned a label of 1. This gives us a binary representation
of the center pixel corresponding to the pattern of compar-
isons in the neighborhood of the center pixel. However,
our proposed GRAB method does not use a single uniform
definition as in Local Binary Patterns, but it combines, in
a more meaningful way, multiple different neighborhood
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Figure 2. GRAB Representation for a GRAB-5. Each 5x5 re-
gion computes the average in that region (average over rectangles
shown on right). Note that each region is displaced to just over-
lap the center pixel . If the center average is significantly different
than average for neighbor k, then set bit k to 1, else set to 0. The
blurring and displacement of the neighborhoods more accurately
models the resolutions/scale chances in an image.

rules. GRAB is a generalization of LBP designed to over-
come its limitations on scaling and orientation. One of the
generalizations of LBP found in the literature was Elon-
gated Local Binary Patterns with with Average Maximum
Distance Gradient Magnitude [19]. In this work, the local
features are defined considering the elliptical neighborhood.
They also defined a feature called Average Maximum Dis-
tance Gradient Magnitude which includes the intensity dif-
ference between the center pixels and neighborhood pixels.
They have shown successful results on FERET dataset with
low resolution images. Our GRAB operator can be used as
a generalization of ELBP in the sense the block averages
around the center pixel can be arranged in circular or ellip-
tical fashion.

Here are the major modifications we have made in de-
scribing the GRAB patterns.

2.1. GRAB as scale invariant operator

The first, and most significant, change is the use of the win-
dowed operators for the neighborhoods. In standard LBP,
the comparison is that of a pixel directly with it’s neigh-
bors. The prior extensions to produce “multi-resolution”
LBP simply used a larger neighborhood “circle” but sam-
pled the raw pixels on that circle. While it did consider pix-
els at greater distances, sampling does not mimic changes
in resolution or scale. To address this, our neighborhood
operators average the image over a region to define their
values. We then define the averaging window and the idea
of multi-scale GRAB. While the neighborhoods for averag-
ing could be any shape, use of rectangular regions allows
use of summed area tables [5], also known as integral im-
ages, which allow very efficient computation of averages
over rectangle regions.
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As an example eight neighboring regions are labeled as
in the figure 2. The regions use N x IV rectangular average,
with one pixel overlap where NV is the size of GRAB win-
dow operator. For center pixel ¢, a region of size N x NN is
defined and the average over the region is calculated. This
value is assigned to the center pixel c. Similarly, for the
neighboring regions of the same size, the average is com-
puted. Now the average value of the central region, which
is the value of the center pixel after the transform, is com-
pared with the averages of the neighboring regions and the
threshold is applied to compute the labels of the neighbor-
ing pixels. The result is an 8-bit number representing one
scale of neighborhoods around the point c. We can then
compute a histogram, or partial histogram, of occurrence
within the window. For face-based recognition we combine
the histogram based features for the multi-scale facial re-
gion description.

This multi-scale representation of GRAB descriptors al-
low it to account for the changes in spatial resolution in the
images since we can store multiple scales at once. This
makes facial recognition highly robust to changes in scale
and also to changes in image quality.

2.2. GRAB as noise tolerant operator

Standard LBP uses a simple comparison between the cen-
ter pixel and its neighborhood, which makes it sensitive to
noise. We introduce the idea of threshold in defining the bit
pattern around a pixel:

9(c,3) = [15() = (S()] < en) 3)

where e is threshold defined from a statistical analy-
sis of expected level of noise for the sensor data when
summed/blurred to level V. The rationale for the added test
is that only “statistically significant” differences should be
considered to produce a bit in the resulting binary number,
or the resulting representation will be significantly impacted
by noise. This makes GRAB more stable to minor varia-
tions and noise, which is common in intensified imagery,
than the basic LBP operators.

2.3. GRAB as variations tolerant and rotation in-
variant operator

Another change in the definition of GRAB patterns is the
labeling of the bits around a pixel. We define NxN block
average around a pixel and we should still order the blocks
to define the binary representation. The labeling in a stan-
dard LBP is spatially shown on the left of Figure 3 with our
new labeling on the right. A small variation in the local edge
direction in the standard pattern switches from bit 1 to bit 8,
i.e. a very large change. Our new pattern mode provides a
more refined 8-neighbor labeling, where any two neighbor-
ing directions in the image are never more than a factor of 4
away in resulting encoding. This increases stability if there

are minor variations in the edge features. We also have pro‘!
posed a new approach to solving the orientation problem,
using the pixel values at a larger scale (larger window op-
erator) to anchor the “orientation” for each pixel. When the
local neighborhood rotates, the larger scale’s blurring will
also rotate, and the GRAB features become relatively ori-
entation independent.

1 2 |3 112 |4
8 4 3 6
716 |5 507 |8

Figure 3. Left shows standard neighborhood numbering of pixels
for LBP, right shows alternative numbering for GRAB, which en-
sure that small variation in edge angles cause smaller variations in
the binary representation.

3. GRAB-based Recognition

As mentioned in Section 2, GRAB operator assigns a label
to every pixel in the image by thresholding the center pixel
with the pixel value of Nx/V block average by 8 neighbors
of NxN block average. The pattern thus obtained is con-
sidered as a binary number and thus every pixel in the im-
age is assigned such a number. Also, using the neighbor
as a NxNNV block average does not affect the idea of uni-
form pattern. We can still make use of the uniform pattern
which according to [!, 21] is a binary pattern that contains
at most two bit-wise transitions from 0 to 1 or vice versa
when the bit pattern is considered circular. For example,
the patterns 00000000 (O transitions), 01110000 (2 transi-
tions) and 11001111 2 transitions) are uniform whereas the
patterns 11001001 (4 transitions) and 01010011 6 transi-
tions) are not. We continued to use uniform pattern in our
representation because it accounts for a larger percentage
of the image representation in FERET dataset [I, 21] and
we are using a subset of this dataset for our experiments. It
also has the advantage of dimension reduction while using
SVM. To represent the face image, the histogram of such
patterns/binary numbers at different levels is used.

Figure 4. An image at various stages in the GRAB process. (a)
clean image (b) lower optic resolution image (c) image after
GRAB processing with 64 regions
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FERET240 LFW610
Image width | LBP | GRAB | LBP | GRAB
130 97.08 | 97.5 | 32.79 | 34.26
52 85.0 | 9635 | 30.98 | 33.77
39 64.58 | 96.25 | 27.54 | 30.33
26 43.33 | 95.83 | 20.16 | 26.72
13 2292 | 83.33 | 6.39 18.03

Table 1. Performance of Nearest-Neighbor classification on
FERET240 and LFW610 with weighted regions.

While we could work in the space of smaller images,
scaling down the windows, its easier to conceptualize, and
implement, when we scale the different resolution image
back to the same size, so all histograms are computed in the
same manner and all “window sizes” are in the same space
with respect to facial geometry. All scale conversions for
the paper were done using ImageMagick’s convert function.
Figure 4(c) shows an original and the up-sampled low-scale
image aligned.

For face description using GRAB features we use the
same approach as LBP features because they represent the
local as well as global description of the face image. Geo-
metrically normalized images, which are all 130 pixels wide
and 150 pixels high, are divided into 64 regions (8 rows
and 8 columns) as shown in Figure 4(c). GRAB-based his-
tograms are computed in each region and are concatenated
to form the global feature vector. To extend this idea to the
multi-scale level, we actually compute GRAB histograms
at different scales of GRAB window operator. For exam-
ple, for GRAB-3-5-7, the binary pattern was computed tak-
ing the block average of 3x3, 5x5, 7x7 neighbors, we con-
catenate the histogram features of each scale to form the
global histogram feature vector, which represents the local
features and global features, as well as the features at dif-
ferent scales.

We also verified the performance of LBP on the standard
FERET partitions as mentioned in [I] achieving 96% on
fafb, 47% on fafc, 57% on Dup1 and 48% on Dupll without
the weights assigned to the regions. The slight difference in
the results could be due the way the images are normalized.

We chose to use an SVM-based classification method
to take advantage of the performance increases it offers
over approaches traditionally used with LBP, such as near-
est neighbor [1] and because anyone looking to deploy ei-
ther LBP or GRAB should be using more advanced ma-
chine learning. We note the SVM process used improves
the performance of both LBP and GRAB, but the choice of
machine learning classifier is not the critical aspect of this
paper. Refer Tables 1, 2 and 3 to see the performance gain
due to SVM over Nearest Neighbor.

While the underlying models for the matching algorithm
differ between our implementation and the standard LBP

implementations, the processing of the images to generaté
a representative feature vector (as described in Section 3
for remains the same. Given feature vector representations
for both training (gallery) and testing (probe) sets of im-
ages, the former set is used to train a multiclass Support
Vector Machine (SVM), while the latter set is subsequently
tested against the trained model. In particular we train the
SVM with the the LBP or concatenated GRAB histograms
as feature vectors, with each subject’s gallery image being a
positive example for the multiclass SVM, implemented via
PyML. We then test with similar feature vectors obtained
from the probe images.

4. Evaluation Protocols and Experiments

We test our proposed GRAB operator on subsets of two
published data-sets. The FERET (Face Recognition Tech-
nology) [16] set was chosen due to extremely common use,
allowing readers to do comparisons with many algorithm.
It is, however relatively constrained nature in: all images
used were frontal and under fairly consistent lighting con-
ditions. In order to provide a more robust, and realistic, set
of experimental results for unconstrained face problems, the
same tests were also run on a subset of Labeled Faces in the
Wild (LFW) [8]. This set is relatively unconstrained and is
generally considered one of the most difficult published set
for facial analysis.

To use our SVM-based classification method and address
some of the pose issues we require a gallery of more than a
single image. To reduce the potential for an outlier to have
potentially disastrous effects on the training of the SVM,
while still maintaining a relatively small gallery size and
dealing with the limited number of views in the FERET pro-
tocol, we used three gallery images per subject.

Thus, the following protocol was designed and used for
testing with both data sets: subjects for whom the data set
contained fewer than four images were discarded. For each
of the remaining subjects, a set of four images were cho-
sen by an alphabetic sort on the names given in the original
data set. Of these four images, the first three comprised a
subject’s gallery; the last was used as a probe image. These
subsets have been dubbed FERET240 and LFW610 respec-
tively. For FERET, this ordering means the gallery gener-
ally included images from the FA and FB subsets while the
probe is from the one of the more difficult sets (DUP1 or
DUP2). For LFW this ordering has particular no relation to
standard stets or collection process..

Because we use a multiple-image gallery for building the
SVM, it was necessary to deviate from the published pro-
tocols for each data set. In addition, our effort is focused
on recognition. In comparison, LFW’s original protocol
is written from the perspective of a verification problem,
which not could be be directly modified into the context of
a recognition problem.
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Figure 5. Extraction of GRAB Face Descriptors. From left to right, original image of a subject geo-normalized to the size of 130x150,
images of the same subject at sizes 52x60, 39x45, 26x30,13x15, image of size 13x15 up-sampled to 130x150. The right shows a group of
GRAB operators applied on the image using GRAB window operator of size 3, 5, 7, and 9. The histogram features are extracted from the
64 different regions of the GRABBed images and are concatenated to form a global histogram descriptor. Global descriptors from multiple
scale GRABBed images are extracted and concatenated to form a multi-scale histogram feature vector.

Because this protocol deviates so markedly from the
published protocol for FERET and LFW, let us briefly men-
tion the performance of Pinto et.al.’s V1 algorithm ([17]).
When using that algorithm with the above protocols, in-
cluding the 3 image gallery training process, the V1-like
algorithm achieves 97.5% accuracy (rank one recognition)
on FERET240 and 41.3% on LFW610. The first thing to
note it that, as one would expect, LFW is more difficult than
FERET. The second and more important aspect of this com-
parison shows how much more difficult our LFW610 pro-
tocol is compared to the basic LFW verification protocol
where the V1-like algorithms obtains nearly 80% accuracy
following the standard LFW protocols.

To evaluate the impact of scale on the algorithms we gen-
erate several instances of reduced spatial resolution images
with the process described in in Figure 5. In order to reduce
the variables contributing to recognition score differences,
so as to focus on the image degradation due to scale, im-
ages were first preprocessed using the standard geometric
normalization process provided by the CSU Face Identifi-
cation Evaluation System [3]. This resulted in images of
a uniform size containing faces oriented approximately the
same way. Although the images are preprocessed to have
the same pixel dimensions (and thus the same digital resolu-
tion), those whose original representation had fewer pixels
in either dimension will still have reduced optic resolution
due to the interpolation necessary to up-sample the image.

For individual experiments, each dataset was divided
into its component “gallery” and “probe” subsets. Each im-
age in the probe subset was then down-sampled to 10%,
20%, 30%, and 40% of its original size (face dimensions of
13x15 pixels, 26x30 pixels, 39x45 pixels, and 52x60 pix-
els, respectively), thus generating four new sets of probes
for our experiments. As shown in Figure 5 we compute
the four scales, simulating degradation with respect to op-
tic resolution. The image scaling resulted in a decrease in
image size (both optic resolution and digital resolution as
compared to the original image), which would complicate
the data alignment issues. However, the geometric normal-
ization of the preprocessing phase subsequently uses eye lo-

Image || GRAB | LBP | Gain | VI1-Like | Gain
130 99.17 | 98.75 | 04 97.5 0.17
52 98.83 | 94.58 | 4.49 89.17 10.83
39 98.83 | 88.75 | 11.35 69.17 42.87
26 96.67 | 75.0 | 28.89 26.25 268.2
13 83.33 | 46.25 | 80.17 0.42 19740

Table 2. Rank 1 Recognition Rate of GRAB , LBP and V1-like al-
gorithm with the percentage improvement of GRAB over LBP and
V1-Like. This is on FERET240 dataset with Gallery and Probe
images at difference scales. The width of the probe images are in
pixels in the table. The gallery image size is 130x150. Probe and
gallery images have the same aspect ratio.

cation to scales the probes (and the gallery images) to have
consistent eye locations and overall face dimensions of 130
pixels width and 150 pixels height, regardless of input im-
age size or optical resolution. Since the probe images were
considerably smaller than the gallery images, the resulting
preprocessed probes have considerably worse optic resolu-
tion than the preprocessed gallery images. This procedure
was performed for both FERET240 and LFW610.

5. Results

We ran experiments using the aforementioned protocols,
to compare GRAB and standard LBP on images of var-
ious scales. Table 2 summarizes the results obtained in
FERET?240 set. We performed similar experiments with
the LFW610 dataset and the results are shown in Table 3.
Since FERET is a highly-constrained dataset we get com-
paratively higher overall performance in FERET240 than in
LFW610, which is a highly unconstrained dataset.

It is very clear from the results in Tables 2 and 3 that
our proposed GRAB method outperforms LBP in extremely
low scale images even of simple controlled mostly frontal
images. The interesting results are when the images are
degraded severely. The performance of LBP is highly im-
pacted by decreases in scale while GRAB is far less suscep-
tible. The percentage improvement of GRAB over LBP on
less degraded images is consistent, but not very large. For
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Figure 6. Detection and Identification Rate vs. False Accept Rate
on FERET?240 set for selected demonstrative scales. Both LBP
and GRAB are shown, with GRAB vastly outperforming LBP.

Image || GRAB | LBP Gain | Vl-Like | Gain
130 559 | 53.28 4.9 41.64 34.24
52 51.15 | 4557 | 12.24 31.97 59.99
39 459 | 40.82 | 12.44 24.75 85.45
26 36.39 | 28.20 | 29.04 10.98 2314
13 18.2 8.85 | 105.64 0.49 3610.4

Table 3. Rank 1 Recognition Rate of GRAB, LBP and V1-Like
algorithm with the percentage improvement of GRAB over LBP
and V1-Like. This is on LFW610 dataset with Gallery and Probe
images at difference scales. The width of the probe images are in
pixels in the table. The gallery image size is 130x150. Probe and
gallery images have the same aspect ratio.

Image width || GRAB-Best | GRAB-379 | GRAB-3579
130 99.17 99.17 99.17
52 98.83 98.83 98.83
39 98.83 98.83 98.83
26 96.67 95.83 95.42
13 83.33 77.9 77.5

Table 4. Impact of defined combination of scales on GRAB per-
formance on the FERET240 dataset. Results for GRAB-Best are
obtained by using the ground-truth information, where we know
the difference in scales in probe and gallery images and choose
the appropriate scale operator. GRAB-3,7,9 is when we predefine
the scale of GRAB operator to be 3, 7 and 9 and GRAB-3,5,7,9 is
when we combine all the scales but 1.

the images of size 52x60, the improvement is 4%, and for
39x45 images it is 10%. As the degradation increases, the
percentage improvement increases. For the images which
are scaled down by 80% with image size of 26x30, we get
the improvement of around 29%, while for 90% degraded

images and size reduced to 13x15 we get 80% improve7-

ment over LBP. This clearly shows that GRAB is tolerant
with respect to changes in resolution while LBP still suffers
when there is a significant change in scale.

In addition, an analysis such as that shown in Figure 6
further demonstrates the superiority of GRAB over LBP,
especially on more degraded images. The technique for
this analysis is based on a method for visualizing perfor-
mance on open recognition problems presented in [15] that
generalizes a ROC curve. It may seem unintuitive that the
curves do not reach the full rank-1 recognition rate shown
in 2; however, our data exhibited the property that the worst
score over all false accepts was still better than several true
accepts. Thus, the continuation of the line (if any) could not
be accurately extrapolated from our data.

We do a similar analysis for the results on LFW610
dataset as well, where the overall problem is much more
difficult because of the greater natural variation in the data.
The overall recognition on LFW610 is actually consider-
ably high, considering the difficulty of the dataset, with
55.9% recognition on clean images, outperforming the V1-
like algorithm of [17] which only achieves 41% rank-1
recognition when applied to this dataset in a recognition
scenario. LBP achieves 53.28% on the geometrically nor-
malized, unscaled LFW610 dataset. Looking across scales,
the percentage improvement of GRAB over LBP is 12.2%,
12.4%, 28.8%, 105.6% respectively for probe image sizes
of 52x60, 39x45, 26x30 and 13x14 . This is a significant
improvement in the performance on a reasonably uncon-
strained dataset.

For each experiment with a probe image of particular
scale, we tried different combination of GRAB window op-
erator. For example, we use the combination of histogram
feature vectors obtained by using GRAB window operator
of size 1, 3 and 5. After performing several such exper-
iments, we analyzed the best results we could obtain so
far using GRAB, which we call “GRAB-Best” in Table 4.
However, using this approach to recognize faces in the real
world, where the difference between probe and gallery im-
age scale is not known a priori, it would not be feasible and
may not be computationally efficient to do so. We analyzed
the results to determine if we can simply use the combi-
nation of multiple scale GRAB features and and still obtain
comparable results. We observed that combination of multi-
ple scales sometimes decreases results for a wide scale vari-
ance but then it is more robust to combine multiple scales
than to use a single scale like LBP. We also observed that
the combination of larger GRAB window operators works
better for a large decrease in scale while the combination of
smaller GRAB window operators works better for less scale
variance in probe and gallery images, but that the difference
is not that much. For example, we considered the combina-
tion of 3 different GRAB window operator 3, 7, and 9 to see
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the performance over all the levels of resolution reduction.
We call it GRAB-379 because it combines GRAB window
operator of size 3, 7, and 9 and the results are summarized
in Table 4. Rank-1 Recognition results for the GRAB-Best,
GRAB-379, and GRAB-3579 are not very different, while
they still perform significantly better than LBP.

6. Conclusion

In this study, we have presented the serious problem in
face recognition of size and optic resolution variation due
to scale and reviewed various pre-existing techniques that
have attempted to overcome these obstacles. Based on the
best performing of these methods, we have developed the
novel GRAB operator and demonstrated its significant per-
formance advantages over LBP in situations of severely de-
creased scale. While LBP’s performance drops off sharply
as resolution decreases, the performance of the GRAB oper-
ator remains high despite the radical loss of resolution. Due
to the nature of GRAB as a generalization of LBP, future
work will revolve around evaluation of the many other gen-
eralizations defined by GRAB, and their ability to address
additional issues in unconstrained face recognition.
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