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ABSTRACT

This paper is a security analysis of leading privacy en-
hanced technologies (PETs) for biometrics including biomet-
ric fuzzy vaults (BFV) and biometric encryption (BE). The
lack of published attacks, combined with various “proven” se-
curity properties has been taken by some as a sign that these
technologies are ready for deployment. While some of the
existing BFV and BE techniques do have “proven” security
properties, those proofs make assumptions that may not, in
general, be valid for biometric systems. We briefly review
some of the other known attacks against BFV and BE tech-
niques. We introduce three disturbing classes of attacks against
PET techniques including attack via record multiplicity, sur-
reptitious key-inversion attack, and novel blended substitution
attacks. The paper ends with a discussion of the requirements
for an architecture to address the privacy and security require-
ments.

1. INTRODUCTION
Biometrics, those unique traits that do not change significantly
over a lifetime, present interesting challenges to the security
researcher, because of their inherent properties. Unlike famil-
iar cryptographic techniques, biometric data is inexact and
can only be approximately matched, hence simple hashing
cannot protect it. We also care a great deal about privacy -
our biometrics may be used to identify who we are, in cir-
cumstances where anonymity is expected. Or, even worse,
we may become the victims of identity theft if our biomet-
rics are compromised. The most serious flaw of biometrics,
however, is non-revocability. If a biometric is compromised,
the user cannot simply generate a new one, as with passwords
or PINs. Once a biometric is compromised, it can never be
recovered.

Privacy enhancing technologies (PETs) have been intro-
duced to enhance the privacy and security of biometrics, so
that they may warrant widespread adoption. Ideally, PETs
should make use of as little personal data possible for au-
thentication or validation. Moreover, any personal data used
should be protected in such a way that it is infeasible to re-
cover the original data or spoof the user identity.
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Biometric template protection is an emerging PETs re-
search area that seeks to compensate for insecurities inherent
in biometric security. To protect a template, any transmitted
secret must be secured, along with the accompanying biomet-
ric data. Recent work [1] has shown that recovering biometric
data from templates is possible, thus leading us to a stronger
motivation for protection. The critical nature of this area leads
one to question the security put in place, as would be done for
any traditional cryptographic system. Are the current offer-
ings sufficiently secure for deployment? Unfortunately the
answer is “not yet”.

Work on attacks against biometric PETs is surprisingly
limited. Only a few papers [2] [3], [4], defining attacks against
current PETs research exist. These attacks do not span the ex-
tent of the weaknesses in current technology.

In this paper, we first define four general classes of attacks
in Section 2, including three novel approaches: attack via
record multiplicity (ARM), surreptitious key-inversion (SKI)
attack, and new types of substitution attacks. We then present
an overview of the operation of BFV and BE, followed by our
security analysis in Sections 3 and 4. By examining weak-
nesses in existing systems, we will be able define the require-
ments for secure biometric systems. We conclude with an
enhanced set of requirements for PETs architectures.

2. CLASSES OF ATTACK
In order to motivate PETs technology, we first look at attacks
against the database in a standard biometric security system.
The database is a common target of attack, and certainly a
fruitful path of attack against standard biometrics. As de-
picted in Figure 1, a traditional biometric system will store
the original templates in a database, for use in authentica-
tion/identification comparisons. If an attacker can gain access
to the database (despite its security measures), all template
data (X) can be compromised.

At the very least, encryption should be utilized to pro-
tect enrolled templates in the database, with keys stored by
a trusted third party off-site. From a privacy point of view,
function creep and owner abuse must be considered - neither
of which is reduced by standard encryption. Since decryption
is somewhat expensive, and needed on each match, it is likely
system operators will often keep many/all records decrypted
in memory.



Fig. 1. An attacker compromises the database, and is able to
retrieve the template X

Unfortunately, illicit access to databases with “private” in-
formation has become commonplace, with over 150 million
financial/personnel records lost in 2006. Even with template
encryption, using a worm or virus an attacker might get access
to decrypted data in memory or intercept a key intended to un-
lock an encrypted template, especially given the frequency of
use. PETs systems attempt to raise the bar a step further by al-
tering the template before storage in such a way that it cannot
be linked back to the user’s original biometric data and such
that matching or other operations take place in the encoded
space. We must presume that an attacker could gain access to
the database, and retrieve any data stored there.

2.1. Attacks via Record Multiplicity
While many PETs for biometrics have attempted a formal
analysis of their security, a significant oversight has been the
issue of the risk from attacks that use multiple records. Since
to be useful biometric-based tokens need to be used in many
independent locations, they need to be non-linkable (to pro-
tect privacy) and not subject to combination. But combina-
tion issues must be explicitly addressed, and are well known
in standard cryptography. A classic “perfect security” model
uses a one-time pad. Its security, however, strictly depends on
the single use of the pad. Some PETs depend on a random
one-time pad model, and ensure the pad is used only once.
But it is important to realize that in the one-time pad model,
the pad or data are, in a deep sense, interchangeable. In a
traditional application of a one-time pad for cryptography, no
one would think of sending the same message with multiple
different pads, so it is not discussed in that literature. Logi-
cally, however, it is the same as using the same pad with many
messages, and hence violates the single-use assumptions and
hence the perfect security.

Referring to Figure 2, we see multiple enrollments for
the same set of biometric template data X . Each enrollment
has its own secret κ, resulting in multiple different encod-
ings (F1(κ1) to Fn(κn)), which are subsequently transmitted
and stored by various systems with the same implementation.

Fig. 2. Attack via Record Multiplicity (ARM). An attacker
collects multiple enrollment templates, and is able to com-
bine the data and at a minimum link records, and in the most
dangerous case can retrieve the template X and the secret κ

In an Attack via Record Multiplicity (ARM), if an attacker
can harvest several of these encodings, it may be possible
to correlate the data contained within between encodings to
link the databases or, in some cases to directly retrieve X and
κ1 . . . κn. Examples are provided in Sections 3 and 4.

The work of [4], discussed more in Section 3.1, could be
viewed as doing a ARM analysis for one class of algorithms
– the community needs more of that type of work.

2.2. Surreptitious Key-Inversion Attack
In BFV and BE, the stated goal of the system is the release of
a secret key. To be useful, this key needs to be used for some-
thing, and if it leaves the vault in plain text form opens up a
new range of attacks. Even if it only leaves in encrypted form,
it opens up a range of insider and system-owner attacks. Fig-
ure 3 shows this with encoded data F (κ) and an intercepted
secret κ. By knowing κ, an attacker can decode the biomet-
ric template data X by identifying values related to κ. An
example is presented in Section 3.

Scenarios in which an attacker can recover κ are not hard
to imagine. For example, if κ is an ID for user login or a
standard cryptographic secret key, it might be possible to in-
tercept it as it is submitted or used in a further portion of an

Fig. 3. The SKI attack. If the attacker has knowledge of the
secret κ, the template X can be recovered.



Fig. 4. Traditional and blended substitution attacks

authentication or verification system not explicitly integrated
with or controlled by the biometric security system (i.e. the
operating system), especially by an insider. Even for exter-
nal attackers, traditional system attacks have exploited un-
protected data transmission, unencrypted memory and virtual
memory, or have utilized Trojan horse programs to intercept
data. PETs, in their most basic form, do not place any re-
quirements on the nature of the secret. If κ is known to one
or more persons, it could be obtained by an attacker via so-
cial engineering - an attack that biometric systems are usually
resilient to. Failing to consider asymmetric modes of attack
invites trouble; determined attackers will not take the direct
approach in their own security evaluations.

2.3. Blended Substitution Attacks
In a substitution attack, an attacker alters the contents of a bio-
metric record, with or without knowing something about the
record or biometric data. For a general PETs system, Figure 4
shows multiple ways this could occur. The user enrolls their
biometric data XU and a secret κU . Later, the attacker injects
another set of biometric data XA and another secret κA (or κU

if known) inplace of the user’s template. The attacker’s data
may be directly injected before encoding, or pre-encoded and
inserted into the message before (or after) it has been accepted
into the database. The database holds only the attacker’s data.
Digitally signed templates are a partial solution.

In the new blended substitution, the user and attacker’s
data are combined in a single template. If they blend using
secret κU we call it an insidious blending as there is no way
to detect it is being used. A blended template allows either the
user or the attacker to authenticate against the same record. In
the traditional substitution case the attacker can authenticate
but simultaneously produces a denial of service to the origi-
nal user, which increases the chance of detection. In the new
blended substitution the attacker can use the records simulta-
neously with the user.

With straight biometrics, e.g. minutiae, blended substitu-
tion is not practical since a match with 50% of minutiae not
matching would likely be rejected. As we shall see, with bio-
metric PETs, the privacy filter also prevents detection of the
blending. Even more alarming, an insidious blended attack
can be used as a back-door to biometric authentication sys-

tems - by malicious parties or legitimate insiders (recall the
Clipper initiative), even with signed templates.

3. BIOMETRIC FUZZY VAULTS
In order to solve the problem of hiding a key and unlocking
it with biometric or other approximately matching data, Juels
and Sudan [5] introduce a construct called a fuzzy vault. In-
spired by previous work [6] on fuzzy commitment, whereby
error-correcting codes were first introduced for approximate
matching, fuzzy vaults account for two deficiencies in the
fuzzy commitment scheme: intolerance of substantial symbol
reordering, and security over non-uniform distributions.

Briefly explained, Alice places a secret κ in a fuzzy vault
and locks it using a set A of elements from some public uni-
verse U . To unlock the vault, and retrieve κ, Bob must present
a set B that substantially overlaps with A. Fuzzy vaults are or-
der invariant, meaning A and B may be arranged in any order.
To protect κ, it is represented as a polynomial p, specifically
encoded in the coefficients. A set of points R is constructed
from A and p(A). In addition to these points, chaff points C
are randomly generated and inserted into R. [5] solves the
subset matching problem with Reed-Solomon coding. To de-
code κ, if Bob’s B approximately matches A, he can isolate
enough points in R that lie on p so that applying the error
correcting code he can reconstruct p, and hence κ.

As an example, assume Alice has chosen the polynomial
p(x) = −5x2 + 2x − 1. The coefficients (-5, 2, -1) encode
the secret κ. With an unordered set of data A = {2, 1, 4,−3},
Alice will obtain the polynomial projection: {(A, p(A))} =
{(2,−17), (1,−4), (4,−73), (−3, 38)}. N chaff points C =
{(−1, 14), (−5, 22), ...} that do not lie on p are randomly
generated. These chaff points are added to the polynomial
projection, and all of the points are shuffled randomly. If Bob
can accurately isolate at least 3 points that lie on p, he will
be able to reconstruct p, and recover κ encoded as (-5, 2, -1).
Without at least 3 points, Bob will not be able to recover κ.

In [7], fuzzy vaults are applied to secure fingerprint tem-
plates. To generate the sets A and B, the x and y coordinates
of fingerprint minutiae points are used. κ is secured via the
fingerprint minutiae, and can only be recovered if the minu-
tiae set A ≈ B. It is important to note that in this scheme,
the vault is separate from any back-end application (the use
of κ is decoupled from the vault) - it is only responsible for
securing κ with the fingerprint data. The implementation of
[7] creates κ as a 128-bit random stream, which is analogous
to an AES symmetric key. Instead of the error correcting code
of [5], a 16-bit CRC is used for set comparison. Both the CRC
and κ bits are concatenated into a 144-bit representation, that
is encoded into an 8th degree polynomial.

Enhancements to fingerprint-based fuzzy vaults are made
in [8] to use minutiae location and orientation. This allows
more chaff points to be included during encoding, and al-
lowing faster identification of chaff points during decoding.
Further, a minutiae matcher is used during decoding, to im-



prove the decoding process. Selecting more reliable minutiae
is done by the use of local quality measures.

The basic idea of fingerprint fuzzy vaults to include helper
data to aid in alignment was considered in [8] and [9]. Align-
ment is a serious problem for fuzzy vault fingerprint systems.
A submitted image might be affected by translation, rota-
tion, and non-linear distortion, causing a false-rejection dur-
ing comparison. Helper data is used as input to alignment
algorithms, but must not leak any information about the minu-
tiae. [8] and [9] align the query fingerprint with respect to the
template via an Iterative Closest Point algorithm.

In [10] a similar problem/approach for biometric authen-
tication is developed with some general results when the dis-
tribution of the original data is known and the system does
not leak data other than the single template + helper. In [11],
they analyzed that model and present some practical results.
The paper, however, lacks sufficient details to actually ana-
lyze the security of the helper functions, or the distributions.
The attacks presented are expected to apply to these as well.

3.1. Previous Attacks Against Biometric Fuzzy Vaults
Chang et al. [3] have investigated chaff identification, that is
in accordance with the second observation of non-randomness
in fuzzy vault schemes noted in [2]. The main idea of the
attack is that chaff points generated later in the process tend to
have a smaller free area. The notion of free area refers to the
amount of neighboring points in R = (X ∪ C). A point with
a smaller free area has more neighboring points than a point
with a larger free area. The authors [3] are unable to prove
this analytically, but do attempt to establish it empirically.

In [4], Boyen takes the definitions of a fuzzy extractor
as introduced by [12], which is theoretically an improvement
over [5] to leak less information. Using Dodis’s definition,
Boyen constructs a counterexample fuzzy extractor which is
provably insecure if the same noisy secret is reused a few
times. We categorize that work as an attack on the defini-
tions put forth in [12] rather than on an actual approach. They
propose two security models that specifically address the case
of fuzzy secret reuse, respectively from an outsider and an
insider perspective, in what they call a chosen perturbation
attack. No actual biometric fuzzy vault approaches are dis-
cussed/attacked in [4].

3.2. New Attacks against Biometric Fuzzy Vaults
Biometric fuzzy vaults are particularly vulnerable to ARM at-
tacks, and we present a few simple examples. Consider a BFV
scheme [7] [8] with m sets of minutiae, (x[i], y[i], t[i], p[i]),
where 0 ≤ i ≤ m, and where the real minutiae sets are mixed
with n lines of random chaff, (u, v, w, z). During enrollment,
we would assume the database would bind different keys via
the helper data/polynomials coefficients p[i], such that given
a matching print they extract the key with either using error
correcting codes or a separate CRC to test subsets and handle
a few errors. Without a matching print, the key and original

data are reasonably well protected since guessing the subset
of real data, without a matching print requires significant ef-
fort, even considering Chang et al. [3].

However, given two or more such BFV instances gener-
ated from the same print, but with different keys and different
random chaff, the minutiae are likely recoverable by match-
ing the two templates. Even with the chaff, each of minu-
tiae+chaff needs to be matchable against the live minutiae. It
is possible that some chaff will randomly match. However,
the error handling mechanism (CRC or ECC) is inherently
designed to address that problem. So while one such template
may be securely protected, given access to two, they can be
easily matched and directly attacked.

We are unaware of any previous work describing attacks
on fuzzy vaults given knowledge of the released key, i.e. a
SKI attack, though some might consider it obvious. If an
attacker is able to recover the secret κ through means other
than an attack against the template, it becomes trivial to re-
cover the biometric data within the currently known biomet-
ric fuzzy vaults. From κ, the polynomial p is directly recon-
structed. Once p is known, R may be directly enumerated to
separate the biometric data, in the form (A, p(A)), from the
chaff which by design is not on the polynomial. Acidential
chaff inclusion is handeled by the correction mechanism.

A blended substitution attack against BFVs is forthright.
Most of the vault is chaff, so the attacker can overwrite chaff
lines with a minutiae set (xA[i], yA[i], tA[i], pA[i]), encoding
XA and κA. The resulting template will contain data for both
the legitimate user and the attacker. They could either release
a different key (but still be associated with the record - the
backdoor approach), or with knowledge of the original key
can also do an insidious blending and inject their data with
the true polynomial. Given the high volume of chaff used, e.g.
[7] has 200 chaff lines to 18 real minutiae, there is capacity to
have many blended substitutions within one biometric fuzzy
vault.

4. BIOMETRIC ENCRYPTION
Biometric Encryption (BE) [13], is a particular approach but
there are, however, many related techniques which will be dis-
cussed below. Like BFVs, BE attempts to provide a way to
retrieve a key using a biometric. The fundamental principle
underlying BE is correlation, with security provided by us-
ing a random-phase correlation “pad”. They provide a formal
reduction to one-time pads. At the core of the BE is a phase-
only template which is the point-wise product Hsi,j (u) =
e−iφAi

(u) · e−iφRj
(u), where Rj is the random pad used in

enrollment j of user i, and Hsi,j (u) is the stored template for
user i at enrollment j.

Bringing this into the realm of biometric identification and
authentication, to satisfy the aforementioned requirements,
correlation is the process used to link and retrieve secret keys.
Instead of returning a single scalar value indicating similarity,
BE returns a 128-bit key. The function Hsi,j is designed to



produce a more complex output pattern than a standard cor-
relation. During verification an input is converted into the
Fourier domain, point-wise multiplied by the stored mask to
produce a result c(u). A “link table” is defined to determine
output the key, by listing multiple locations from c(u) that
when thresholded, produce either a 0 or 1. Multiple (e.g. 5)
entries are combined for each output bit with a majority vote.

For enrollment, BE builds a token composed of H(u), a
cryptographic key k0 linked with c0(x), and an identification
code id0 generated by encrypting k0 and generating a one-
way hash. For verification, the token input image is used to
produce c1(x), which, via the link table, generates a key k1. If
this key when used in hashing the beginning of H(y) matches
id0, the key is released.

In [14] a related approach was presented for face-based
protection, except it used a MACE filter rather than standard
correlation, and it did not include the link-table component to
release the key. The security again depends on the reduction
to the one-time pad. Also related is [15] and other works by
that group, that proposed similar threshold-based + random
pad methods.

4.1. Previous Attacks Against Biometric Encryption
Adler [2] uses a “hill-climbing” attack to successfully com-
promise a BE scheme [16] applied to facial recognition. Hill-
climbing involves the iterative modification of a test image till
it matches an enrolled image. Adler uses the consistency of
a generated “link-table” as his metric, and used it, even with
quantization, to produce a successful attack. Even if the re-
sults were not visually a great match to the input, the results
provide for at worst a masquerade attack, if not a full com-
promise. How could hill-climbing work against something
with “perfect security”? One answer is that the link-table con-
straints, not part of a standard one-time pad, leak information.
Modifications in each iteration are made based on information
leaked during the comparison.

Interestingly, Adler makes the claim that the hill-climbing
attack is also possible against fuzzy vaults, despite the proof
of security presented in [5]. The first observation is that the
proof of security assumes the data held in the fuzzy vault
are random. When applied to biometrics, this assumed prop-
erty is violated since biometric data is inherently structured.
The second observation is that chaff placement is careful, in
order to space chaff points far away from legitimate points.
This placement scheme strays from the randomness assump-
tion. No demonstration of a successful attack, however, is
presented.

In [17] Teoh et. al. show that when the tokenized ran-
dom numbers are obtained by an attacker, the performance
and protection of [15], becomes unacceptable.

4.2. New Attacks Against Biometric Encryption
If the attacker knows the key, a SKI-enhanced hill-climbing
attack becomes possible. Adler’s attack used “consistency”

as a measure during the climb. When the attacker knows the
expected result, they know the link-table constraints on the
data and hence can construct more accurate approximations
of the original biometric data.

Though it has claimed security, we show BE is susceptible
to multiple types of substitution attacks, though not quite as
simply as the straightforward manner applied to fuzzy vaults.
We have found four possible attack routes. The first presumes
that an attacker has knowledge of the key k0 and a traditional
substitution attack. Given the key the attacker simply gen-
erates an enrollment for themselves with their filter function
HA(u), link table and ID. They can simply “add” this as a
new enrollment and the output identification code remains the
same, as k0 has not changed. Thus it is a subsitution without
denial of service and therefore less detectable.

The blended substitution attack requires more knowledge.
It is easiest if attacker has knowledge of the user’s biometric
and the key (e.g. from SKI attack). In this case, the attacker
can craft a filter function HAU (u) that is able to generate a
correlation function cAU (u) based on the user’s and the at-
tacker’s biometric data and a link table that chooses consistent
bits for both the user and the attacker to output the key. The
many levels of freedom in the filter and link-table design pro-
cess makes this straightforward, though it is likely the added
constraints will increase the change of false-rejection. If the
attacker has access to the biometric but not the key, a third
approach is to generate a new enrollment for the combined
HAU (u) and choose a new key and generate the proper hash
id0 data. Since BE does not require any type of mutual au-
thentication with external storage of the key this blended sub-
stitution with a new key would fail on data protected with the
original key, but for any new usage the blended substitution
would be accepted for either attacker or user. If an insider
were able to do this during or soon after enrollment it would
be virtually undetectable.

Other blended substitution attacks combine the use of hill-
climbing [2] to estimate a masquerade image M and key,
which are then used as stand-ins for the known biometric/key
in the above attacks.

With respect to ARM attacks, BE is clearly subject to cor-
relation of the templates. While they have different random
pads all user records have the same phase information for the
user, so by using complex conjugates we can consider testing
two templates of the same user yielding e−iφAu ·e−iφRj eiφAu ·
eiφRk = e−iφRj · eiφRk while for templates of different users
we get e−iφAu · e−iφRj eiφAi · eiφRk which does not reduce
and has lower magnitude since the user and imposter have
different phase information.

With respect to an ARM-based reconstruction, let us pre-
sume an advisory gains access to Hsi,j (u) for j = 1..N .
Looking at the definitions, this is simply multiple samples of
the user’s phase data, φAu , corrupted by random phase noise,
i.e. a standard signal estimation problem given an accurate
noise model. Despite the claims in [13] about phase-only data



improving security, they offered no proofs. It turns out that
once the phase data is estimated, the techniques of [18] show
how to provide an estimation of the full signal from its phase-
only part.

5. CONCLUSION
In this paper, we have introduced three new classes of at-
tacks against biometric fuzzy vaults (BFVs) and biometric en-
cryption (BE): record multiplicity (ARM), surreptitious key-
inversion (SKI) attack, and blended substitution attacks. BFVs
are easily compromised by all three attacks. Biometric en-
cryption is impacted by SKI via improved hill climbing and is
compromised by the ARM and substitution attacks - but with
more effort. Regardless, the security limitations are strong
enough for us to conclude that BFVs and BE are not suitable
for securing biometric systems or for protecting privacy.

Based on what we have learned by studying the weak-
nesses of biometrics and PETs architectures, and through our
own work [19] designing PETs , we have defined the follow-
ing requirements for secure biometric PETs architectures:

1. No combination of data from multiple enrollments by the
same individual should be able to be combined to recover
the biometric template data or to generate a spoof.

2. If any non-biometric data that is used to encode/decode
(e.g. link table), or is released by the system (e.g. key),
is known, the biometric template must not be recoverable
nor should it allow hill-climbing or spoof generation.

3. It should not be possible for two users to authenticate against
the same token with significantly higher frequency than the
system’s documented False Accept Rate.

4. No undetected substitution of records should be possible.

5. Any data transmitted outside the system, except during en-
rollment, should not be suitable to link the underlying user
over space/time/companies.

It is our hope that these new requirements will be adopted
by researchers working in this space to improve the security
and privacy of biometric PETs.
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