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Abstract

This paper presents a novel algorithm for detecting moving objects from a static background

scene that contains shading and shadows using color images. We develop a robust and e�ciently

computed background subtraction algorithm that is able to cope with local illumination changes,

such as shadows and highlights, as well as global illumination changes. The algorithm is based

on a proposed computational color model which separates the brightness from the chromaticity

component. We have applied this method to real image sequences of both indoor and outdoor

scenes. The results, which demonstrate the system's performance, and some speed up techniques

we employed in our implementation are also shown.
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1 Introduction

The capability of extracting moving objects from a video sequence is a fundamental and crucial

problem of many vision systems that include video surveillance [1, 2], tra�c monitoring [3], human

detection and tracking for video teleconferencing or human-machine interface [4, 5, 6], video editing,

among other applications. Typically, the usual approach for discriminating moving object from the

background scene is background subtraction. The idea of background subtraction is to subtract

the current image from a reference image, which is acquired from a static background during a

period of time. The subtraction leaves only non-stationary or new objects, which include the

objects' entire silhouette region. The technique has been used for years in many vision systems as

a preprocessing step for object detection and tracking, for examples, [1, 4, 5, 7, 8, 9]. The results of

the existing algorithms are fairly good; in addition, many of them run in real-time. However, many

of these algorithms are susceptible to both global and local illumination changes such as shadows

and highlights. These cause the consequent processes, e.g. tracking, recognition, etc., to fail. The

accuracy and e�ciency of the detection are clearly very crucial to those tasks. This problem is

the underlying motivation of our work. We want to develop a robust and e�ciently computed

background subtraction algorithm that is able to cope with the local illumination change problems,

such as shadows and highlights, as well as the global illumination changes. Being able to detect

shadows is also very useful to many applications especially in \Shape from Shadow" problems

[10, 11, 12, 13]. Our method must also address requirements of sensitivity, reliability, robustness,

and speed of detection.

In this paper, we present a novel algorithm for detecting moving objects from a static background

scene that contains shading and shadows using color images. We begin by introducing a new

computational color model (brightness distortion and chromaticity distortion) that helps us to

distinguish shading background from the ordinary background or moving foreground objects. Next,

we propose an algorithm for pixel classi�cation and threshold selection. Although we restrict our

attention to indoor environments with static background, our algorithm works fairly well on real

image sequences of outdoor scenes as shown in Section 6.

2 Computational Color Model

One of the fundamental abilities of human vision is color constancy [14]. Humans tend to assign

a constant color to an object even under changing illumination over time or space. The perceived

color of a point in a scene depends on many factors including physical properties of the point on

the surface of the object. Important physical properties of the surface in color vision are surface

spectral re
ectance properties, which are invariant to changes of illumination, scene composition
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or geometry. On Lambertain, or perfectly matte surfaces, the perceived color is the product of

illumination and surface spectral re
ectance.

Figure 1: Our proposed color model in the three-dimensional RGB color space; the background
image is statistically pixel-wise modeled. Ei represents an expected color of a given ith pixel and
Ii represents the color value of the pixel in a current image. The di�erence between Ii and Ei is
decomposed into brightness (�i) and chromaticity (CDi) components.

This led to our idea of designing a color model that separates these two terms; in other words,

that separates the brightness from the chromaticity component. Figure 1 illustrates the proposed

color model in three-dimensional RGB color space. Consider a pixel, i, in the image; let Ei =

[ER(i); EG(i); EB(i)] represent the pixel's expected RGB color in the reference or background image.

The line OEi passing through the origin and the point Ei is called expected chromaticity line. Next,

let Ii = [IR(i); IG(i); IB(i)] denote the pixel's RGB color value in a current image that we want to

subtract from the background. Basically, we want to measure the distortion of Ii from Ei. We do

this by decomposing the distortion measurement into two components, brightness distortion and

chromaticity distortion, de�ned below.

2.1 Brightness Distortion (�)

The brightness distortion (�) is a scalar value that brings the observed color close to the expected

chromaticity line. It is obtained by minimizing

�(�i) = (Ii � �iEi)
2 (1)

�i represents the pixel's strength of brightness with respect to the expected value. �i is 1 if the

brightness of the given pixel in the current image is the same as in the reference image. �i is less

than 1 if it is darker, and greater than 1 if it becomes brighter than the expected brightness.
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2.2 Color Distortion (CD)

Color distortion is de�ned as the orthogonal distance between the observed color and the expected

chromaticity line. The color distortion of a pixel i is given by

CDi = kIi � �iEik (2)

3 Color Image Characteristics

Before discussing our algorithm for detecting moving objects from a static background scene based

on the proposed computational color model, we need to understand some physical characteristics

of real color images which are in
uenced by typical CCD cameras. The CCD sensors linearly

transforms in�nite-dimensional spectral color space to a three-dimensional RGB color space via

red, green, and blue color �lters; � : " ! R3 de�ned as �(C) = [R;G;B]. There are some

characteristics of the output images, that we should account for in designing the algorithm, as

follows

Color variation: In reality, we rarely observe the same RGB color value for a given pixel over a

period of time due to camera noise and illumination 
uctuation by light sources. Figure 2

demonstrates color variation over 100 frames of a static scene (Figure 2a). The gray-scaled

value of each pixel on Figure 2b, 2c, 2d is the scaled standard deviation number of that

pixel computed over 100 frames on red (Figure 2b), green (Figure 2c), and blue (Figure 2d)

separately.

Band unbalancing: Figure 2 also demonstrate unequal variation among color bands (the average

standard deviation of R, G, B of the scene in Figure 2a is 1.860, 1.857, and 1.971 respectively).

Cameras typically have di�erent sensitivities to di�erent colors. Thus, in order to make the

balance weights on the three color bands (R,G,B), the pixel values need to be rescaled or

normalized by weight values. In this work, we normalized the pixel color by its standard

deviation (si) which is given by

si = [�R(i); �G(i); �B(i)] (3)

where �R(i), �G(i), and �B(i) are the standard deviation of the ith pixel's red, green, blue

values computed over N frame of the background frames.

Clipping: Since the sensors have limited dynamic range of responsiveness, this restricts the vari-

eties of color into a RGB color cube which is formed by red, green, and blue primary colors
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as orthogonal axes. On 24-bit images, the gamut of color distribution resides within the cube

range from [0, 0, 0] to [255, 255, 255]. Color outside the cube (negative or greater than 255

color) can not be represented. As the result, the pixel value is clipped in order to lie entirely

inside the cube. This causes an unusual shape of the color distribution. The distribution of

the saturated pixels (pixels that have negative or greater than 255 value on any band) is very

peaked, with the variance being or almost zero (See Figure 2; the dark areas in the scene

tend to have very small standard deviations). We should take this fact into account and set

a default minimal value for si if a pixel's si is zero.

Figure 2: An illustration shows variation of color values on each color band over 100 frames of the
scene shown in (a). (b), (c), and (d) depict standard deviations, s, (scaled by 100) images of red,
green, and blue. The average standard deviations of red, green, and blue color bands are 1.860,
1.857, and 1.971 respectively.
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4 Background Subtraction

The basic scheme of background subtraction is to subtract the image from a reference image that

models the background scene. Typically, the basic steps of the algorithm are as follows:

� Background modeling constructs a reference image representing the background.

� Threshold selection determines appropriate threshold values used in the subtraction operation

to obtain a desired detection rate.

� Subtraction operation or pixel classi�cation classi�es the type of a given pixel, i.e., the pixel

is the part of background (including ordinary background and shaded background), or it is a

moving object.

4.1 Background Modeling

In the background training process, the reference background image and some parameters associated

with normalization are computed over a number of static background frames. The background is

modeled statistically on a pixel by pixel basis. A pixel is modeled by a 4-tuple < Ei; si; ai; bi >

where Ei is the expected color value, si is the standard deviation of color value which is de�ned in

Equation 3, ai is the variation of the brightness distortion, and bi is the variation of the chromaticity

distortion of the ith pixel. Ei, ai and bi are de�ned explicitly later in this section.

The expected color value of pixel i is given by

Ei = [�R(i); �G(i); �B(i)] (4)

where �R(i), �G(i), and �B(i) are the arithmetic means of the ith pixel's red, green, blue values

computed over N background frames.

So far, we have de�ned Ei and si. We also discussed about balancing color bands by rescaling

the color values by the pixel variation factors (si). Thus the brightness distortion in Equation 1

and the chromaticity distortion in Equation 2 become

�i = min
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Next, we consider the variation of the brightness and chromaticity distortions over space and

time of the training background images. We found that di�erent pixels yield di�erent distributions

of � and CD, shown in Figure 3a, b. These variations are embedded in the background model as ai

and bi in the 4-tuple background model for each pixel, and are used as normalization factors. For

data analysis, we want to compare the variations between brightness and chromaticity components;

hence we compute the distance between �Ei and Ei and its RMS which is shown in Figure 3c. The

�gure shows the brightness variation over the image and have the same unit as the chromaticity

variation bi which is shown in Figure 3b, so they are comparable. We found the variation in

brightness (distant between �Ei and Ei) is much greater than the variation in chromaticity (distant

between �Ei and Ii). This con�rms that our computational color model is similar to human vision

which is more sensitive to changes in luminosity than to changes in color.

ai represents the variation of the brightness distortion of ith pixel, which is given by

ai = RMS(�i) =

sPN
i=0(�i � 1)2

N
(7)

bi represents the variation of the chromaticity distortion of the ith pixel, which is given by

bi = RMS(CDi) =

sPN
i=0(CDi)2

N
(8)

4.2 Pixel Classi�cation or Subtraction Operation

In this step, the di�erence between the background image and the current image is evaluated.

The di�erence is decomposed into brightness and chromaticity components. Applying the suitable

thresholds on the brightness distortion (�) and the chromaticity distortion (CD) of a pixel i yields

an object maskM(i) which indicates the type of the pixel. Our method classi�es a given pixel into

four categories. A pixel in the current image is

� Original background (B) if it has both brightness and chromaticity similar to those of the

same pixel in the background image.

� Shaded background or shadow (S) if it has similar chromaticity but lower brightness than

those of the same pixel in the background image. This is based on the notion of the shadow

as a semi-transparent region in the image, which retains a representation of the underlying

surface pattern, texture or color value [15].

� Highlighted background (H), if it has similar chromaticity but higher brightness than the

background image.

� Moving foreground object (F) if the pixel has chromaticity di�erent from the expected values

in the background image.
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Figure 3: An illustration demonstrates the variations of brightness distortion and chromaticity
distortion of di�erent pixel colors over 100 images of the static scene. (a) is an image of ai scaled
by 2000 and (b) is an image of bi scaled by 100, (c) is an image of RMS of distance between �Ei

and Ei scaled by 100.
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As mentioned above the di�erent pixels yield di�erent distributions of �i and CDi. In order to

use a single threshold for all of the pixels, we need to rescale the �i and CDi. Let

c�i = �i � 1

ai
(9)

dCDi =
CDi

bi
(10)

be normalized brightness distortion and normalized chromaticity distortion respectively.

Based on these de�nitions, a pixel is classi�ed into one of the four categories B; S;H; F by the

following decision procedure.

M(i) =

8>>><>>>:
F : dCDi > �CD ; else

B : c�i < ��1 and c�i > ��2; else

S : c�i < 0; else

H : otherwise

(11)

where �CD, ��1, and ��2 are selected threshold values used to determine the similarities of the

chromaticity and brightness between the background image and the current observed image. In

next subsection, we will discuss the method to select suitable threshold values.

However, there might be a case where a pixel from a moving object in current image contains

very low RGB values. This dark pixel will always be misclassi�ed as a shadow. Because the color

point of the dark pixel is close to the origin in RGB space and the fact that all chromaticity lines

in RGB space meet at the origin, thus the color point is considered to be close or similar to any

chromaticity line. To avoid this problem, we introduce a lower bound for the normalized brightness

distortion (��lo). Then, the decision procedure Equation 11 becomes

M(i) =

8>>><>>>:
F : dCDi > �CD or c�i < ��lo; else

B : c�i < ��1 and c�i > ��2; else

S : c�i < 0; else

H : otherwise

(12)

4.3 Automatic Threshold Selection

Typically, if the distortion distribution is assumed to be a Gaussian distribution, then to achieve a

desired detection rate,r, we can threshold the distortion by K� where K is a constant determined

by r and � is the standard deviation of the distribution. However, we found from experiments that

the distribution of c�i and dCDi are not Gaussian (see Figure 4). Thus, our method determines the

appropriate thresholds by a statistical learning procedure. First, a histogram of the normalized

brightness distortion, c�i , and a histogram of the normalized chromaticity distortion, dCDi, are

constructed as shown in Figure 4. The histograms are built from combined data through a long

sequence captured during background learning period. The total sample would be NXY values
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for a histogram. (The image is X � Y and the number of trained background frames is N .) After

constructing the histogram, the thresholds are now automatically selected according to the desired

detection rate r. A threshold for chromaticity distortion, �CD , is the normalized chromaticity

distortion value at the detection rate of r. In brightness distortion, two thresholds (��1 and ��2)

are needed to de�ne the brightness range. ��1 is the c�i value at that detection rate, and ��2 is thec�i value at the (1� r) detection rate.

Figure 4: (a) is the normalized brightness distortion (c�i) histogram, and (b) is the normalized
chromaticity distortion (dCDi) histogram.

5 Clustering Detection Elimination

In our experiments and analysis, we found that the false detection tends to be clustering in some

spots as shown in Figure 5a,c. We tested the detection performance by subtracting 100 background

frames from the background models using the methods explained above. The error rate (1 � r)

was set at 0.01%. Yellow pixel shows that false positive detection occurs once on that pixel over

the 100 testing images. Red pixel depicts the false positive detection occurs more than once on

that particular pixel. From observation, we found that those pixels are those that have very

small variation in chromaticity distortion, in other words, very small bi. When such small bi are

used in normalization, it makes dCDi too big, and likely to exceed the threshold. We, hence,

propose a method to limit the value of bi to be a certain number called default minimum bi. To

systematically obtain the default minimum bi, an optimization process is performed. The process

starts by assigning a default minimum bi value to all bi that are smaller than the default; then

performing the detection on all frames. Next, we compare the error rate of those pixels that have bi

bigger than the default value against the error rates of those pixels that have the default bi value.

A search is performed to �nd the default minimum bi that yields a balanced error rates (the error
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rates of both groups of pixels are equalized). Figure 6 shows plots of error rates versus the default

minimum bi value of the sequence shown in Figure 5a. The default minimum bi obtained from the

optimization is 0.55. Figures 5b,d show the result of false detections over the same sequences after

applying the computed default minimum bi values. The false detection spatial distributions are

sparser than the originals in both sequences.

Figure 5: (a) and (c) demonstrate the clustering of the false positive detection over 100 frames of
color picture sequence and indoor scene sequence. Yellow pixels represent that the false positive
occurs once on that pixel over the 100 testing images; red pixels depicts the false positive occurs
more than once on that pixel. (b) and (d) show the result of the proposed optimization method
to de-clustering the false positive detections by limiting the minimum bi value.
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Figure 6: An illustration shows the error rates of those pixels which have small bi and those pixels
that have larger bi. The crossing point which depicts the desired default minimum bi value that
balances the error rates between those two groups of pixels.

6 Result

This section demonstrates the performance of the proposed algorithm on several image sequences

of both indoor and outdoor scenes. Sequences shown here are 320x240 images. The detection

rate, r, was set at 0.9999, and the lower bound of the normalized brightness distortion (��lo) is

set at 0.4. Figure 7 shows the result of applying the algorithm to several frames of an indoor

scene containing a person walking around the room. As the person moves, he both obscures the

background and casts shadows on the 
oor and wall. Red pixels depict the shadow, and we can

easily see how the shape of the shadow changes as the person moves. Although it is di�cult to see,

there are green pixels which depict the highlighted background pixels, appearing along the edge of

the person's sweater. Figure 8 shows a sequence of an outdoor scene containing a person walking

across a street. Although there are small motions of background objects, such as the small motions

of leaves and water surface, the result shows the robustness and reliability of the algorithm. Figure

9 illustrates our algorithm being able to cope with the problem of global illumination change. It

shows another indoor sequence of a person moving in a room; at the middle of the sequence, the

global illumination is changed by turning half of the 
uorescence lamps o�. The system is still able

to detect the target successfully.
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Figure 7: An example shows the result of our algorithm applying on a sequence of a person moving
in an indoor scene. The upper left image is the background scene, the upper right image is the
input sequence, and the lower left image shows the output from our background subtraction (the
foreground pixels are overlaid by blue, the shadows are overlaid by red, the highlights are overlaid
by green, and the ordinary background pixels are kept as the original color.) The lower right image
shows only foreground region after noise cleaning is performed.
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Figure 8: Another example shows the results of applying our algorithm on a sequence of an outdoor
scene containing a person walking across the street.

14



Figure 9: An illustration shows our algorithm can cope with the global illumination change. At
the middle of the sequence, half of the 
uorescence lamps are turned o�. The result shows that the
system still detects the moving object successfully.
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7 Speed-Up Technique Used in Our Implementation

In designing the algorithm, while we emphasized accuracy and robustness, we also took an issue of

speed into account. To speed up the system, we employed the following techniques.

Reduce number of operations at run-time: If memory is not a hard constraint, we can pre-

compute some constant parameters and store them during the background learning period.

This reduces the number of arithmetic operations that are computed during the detection

time. For example, some of the parameters used in Equation 5 can be pre-computed as

follows:

Ai =

 �
�R(i)

�R(i)

�2
+

�
�G(i)

�G(i)

�2
+

�
�B(i)

�B(i)

�2!

Bi =
�R(i)

Ai�
2
R(i)

Ci =
�G(i)

Ai�
2
G(i)

Di =
�B(i)

Ai�
2
B(i)

At run-time, the computations become

�i = BiIR(i) + CiIG(i) +DiIB(i)

In addition, because a multiplication operation is computed faster than a division operation,

we store (si)�1 , (ai)�1, and (bi)�1 in stead of si, ai, and bi for normalizing processes. These

techniques sped up our system signi�cantly.

Global S vs local si: In most cases, we can use a global square root of average variance (S) in

stead of a per-pixel si to be used in rescaling the color values. S is given by

S = [SR; SG; SB]

where

SC =

vuut 1

NXY

NX
n=1

XYX
i=1

(IC(i; n)� �C(i; n))2 ; C = R;G;B

By using this global S for all pixels in the subtraction process (Equation 5, 6), S always

resides in cache. As a result, the processing time is sped up approximately by a factor of 2

as shown in Table 1 below.
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Using a global S for color normalization Using local si for color normalization

Single 400MHz CPU 27.6 ms/frame 48.9 ms/frame

Dual 400MHz CPUs 13.8 ms/frame 30.6 ms/frame

Table 1: Background subtraction timing result shows a comparison between using global vs local
normalization factors, and spped up gained from utilizing parallelism.

Screening Test: Another technique that we employ to speed up our detection time is utilization

of a screening test. Because the c�i and dCDi computations require many arithmetic oper-

ations, we want to avoid computing these variables of every pixel in the image. We add a

low computational cost screening test on color disparity between the current image and the

background image. This screening test is simply done by computing an absolute di�erent

between the observed pixel and the corresponding background pixel as follows:

jIi �Eij < T

The result from this screening test yields only a subset of pixels that has too much disparity

from the background image. Hence, with this screening test, we can reduce the number of

pixels to which we need to apply the re�ning test on c�i and dCDi as in Equation 5, 6, 9,

10, and 12. One question arises: what is the appropriate T value to preserve the desired

detection, r. We solve this by an empirical method. We construct a histogram of jIi � Eij

and �nd the maximum T that yields a probability that the screening test passes, given that

the pixel is classi�ed as an original background, equal to 100%:

P (jIi �Eij < T jM(i) = B) = 1

Our experimental results show this screening test can speed up the system approximately by

a factor of 1.5 - 2 on average.

Parallel Processing: Since our background modeling and background subtraction are pixel by

pixel, the algorithm can be parallelized with little e�ort by dividing the images into segments

and performing the operations independently on each segment.

8 Conclusion and Discussion

In this paper, we presented a novel background subtraction algorithm for detecting moving objects

from a static background scene that contains shading and shadows using color images. The method
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is shown to be very accurate, robust, reliable and e�ciently computed. Experimental results and

speed up techniques were also shown.

This method may su�er from dynamic scene change such as an extraneous event in which there

are new objects deposited into the scene and become part of the background scene. However, this

problem can be coped with by allowing the system to adaptively update the background model

on-the-
y, as done in [16] and [17]. Another limitation of the system is the problem of re
ection on

highly specular surfaces (such as mirror, steel, or water surface) when the color of a point on such

surfaces can change non-deterministically. This problem is a part of our on-going research.

Streaming SIMD technology, introduced in Intel PentiumIII processor, de�nes a new SIMD

architecture for 
oating-point operations. These instructions can also signi�cantly improve the

speed of our method which is using 
oating-point intensive computations.
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