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Abstract

Diffusion Monte Carlo (DMC) and Green’s Function Monte Carlo (GFMC) algo-

rithms were implemented to obtain numerical approximations for the ground state en-

ergies of systems of bosons in a harmonic trap potential. Gaussian pairwise particle

interactions of the form V0e
−|ri−rj |2/r02

were implemented in the DMC code. These

results were verified for small values of V0 via a first-order perturbation theory approx-

imation for which the N-particle matrix element evaluated to
(
N
2

)
V0

(1+2/r02)3/2 . Details

regarding the convergence of the GFMC algorithm are discussed.
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1 Introduction

Although analytical solutions for the Schrödinger equation are feasible for the hydrogen atom,

more complex atomic structures must be approximated numerically. However, integration of the

N -body Schrodinger equation is no easy task: while the equation is separable for potentials that

are constant in time, matrix diagonalization of the time-independent equation becomes impractical

since computational complexity grows exponentially with dimension (c.f. [8]), and quickly exceeds

current computational capacity. Therefore, physicists have turned to less conventional methods for

solving quantum multi-body problems.

Monte Carlo methods, first implemented during the Manhattan Project, are a class of algorithms

which achieve their results through iterated random sampling of one or more random variable

distributions. A basic example of a Monte Carlo algorithm involves integration by taking n repeated

random samples on a uniform interval [a, b], where a and b are the lower and upper limits of the

integral, finding the value of the function in question at each of these points, summing the values,

and multiplying the sum by the length of the interval divided by the number of points (cf. [5,

p. 171]). As intuition suggests, Monte Carlo methods have better convergence properties than their

than their O(eN ) mesh-based counterparts.

In this paper, we shall explore two Monte Carlo algorithms that are commonly used to solve

for the ground state energies of N -particle systems. The first algorithm we shall explore will

be the Green’s Function Monte Carlo algorithm (GFMC) in which the integral time-independent

Schrödinger equation is obtained via the exact time-independent Green’s function. Monte Carlo

integration is then used to iterate this integral equation until convergence to the ground state is

obtained, which is guaranteed by the power method for finding eigenvalues. The second algorithm

that we shall examine is the Diffusion Monte Carlo (DMC) algorithm, in which the time-dependent

Schrödinger equation is written in imaginary time and an approximation to the time-dependent

Green’s function is used to obtain an iterable integral equation.

1.1 The 3N-dimensional Schrödinger Equation

Let N be the number of particles. The coordinates of each corresponding particle may be

represented by xi, i = 1, 2, ..., N . Let Φ = Φ(x1, ...,xN ) and V be a function of both the positions
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of the particles with respect to an external potential (x1, ...,xN ) and the positions of the particles

with respect to each other (xi − xj ; i 6= j). Then, assuming that all particles are of equal mass, m,

the Schrödinger equation reads:

−
N∑
i=1

h̄2

2m
∇i2Φ + V Φ = EΦ (1)

Writing the problem in units where h̄2

m = 1, and introducing the energy shift Vmax1, the equation

reads as,

−∇2Φ(X)− 2(E0 − Vmax)Φ(X) = −2(V (X)− Vmax)Φ(X), (2)

where X is the 3N -dimensional vector corresponding to the coordinates of all particles, E0 is the

ground state energy, and Φ is the wavefunction of the N -particle system.

By introducing the variable k2 = −2(E0 − Vmax), where k is the wave number, we may write

equation (2) in a more revealing form (cf. [7, pp. 103-104]):

[
− 1
k2
∇2 + 1

]
Φ(X) =

[
V (X)− Vmax
E0 − Vmax

]
Φ(X) (3)

Thus, we have a problem of the form:

LΦ(X) = f(X), (4)

where L is the linear operator [− 1
k2∇2 + 1], and f(X) is the right hand side of equation (3). Now,

by definition,

LG(X,Y) = δ(Y −X), (5)

where G(X,Y) is the Green’s function of L, δ is the Dirac delta function, and Y is an arbitrary

position vector in our coordinate system. Since f(X) =
∫
δ(Y −X)f(Y)dY, by the definition of

1This may be required to make all energies negative, which is necessary for a closed form of the Green’s function
(cf. [7, p. 103]).
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the Dirac delta, we may rewrite the right hand side of equation (4) as

f(X) =
∫
δ(Y −X)f(Y)dY =

∫
LG(X,Y)f(Y)dy. (6)

Hence,

LΦ(X) =
∫
LG(X,Y)f(Y)dY. (7)

Since L is an operator acting on X, we may pull it out of the integral. We may now remove L

from both sides of the equation. Now,

Φ(X) =
∫
G(X,Y)f(Y)dY. (8)

Re-substituting for f yields the integral equation (cf. [7, pp. 103-104])

Φ(X) =
∫
G(X,Y)

[
V (Y)− Vmax
E0 − Vmax

]
Φ(Y)dY. (9)

By using the appropriate Green’s function (cf. [8],[7, pp. 103-104]),

G(X,Y) =
1

(2π)(ν+1)
rνKν(r) (10)

where r = k | X − Y |, we have an integral form of the Schrödinger equation which we will

iterate to solve for ground state energy.

1.2 Importance Sampling

Importance sampling is used as a means of decreasing variance, and, in the case of the GFMC

algorithm, decreasing convergence time by changing both the sampling algorithm and the function

to be sampled. Consider the example given in the introduction of integrating a function f(x) over
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an interval using a uniform distribution. If we instead let h(x) = f(x)
g(x) , and re-write the integral as

∫ b

a
f(x)dx =

∫ b

a
h(x)g(x)dx, (11)

we can sample at random2 N times from g(x), evaluate h(x) at each of these sample points, sum

these N values, and multiply by b−a
N to obtain an integral with lower variance and faster convergence,

provided the “guiding function” g(x) is well chosen (it should mimic f(x)).3 We can implement

importance sampling in our integral equation by re-writing equation (9) as (cf. [7, p. 104])

Ψ(X)Φ(X) =
∫

Ψ(X)
Ψ(Y)

G(Y,X)
[
V (Y)− Vmax
E0 − Vmax

]
Φ(Y)Ψ(Y)dY. (12)

In equation (12), Ψ is the trial wavefunction which we choose prior to iteration as an initialization

for Φ. Thus, before iterating, Φ is equal to Ψ. However, Ψ does not change over the course of

iterating, whereas Φ evolves to the ground state wavefunction. We shall elaborate on this presently.

2 The GFMC Algorithm

2.1 Overview

The GFMC algorithm is a stochastic variational algorithm which iterates equation (12) for some

trial wavefunction, until convergence to the ground state is obtained. First, we will consider what

the algorithm effectively does, then we will discuss implementation.

The general idea is to start out with an initial trial wavefunction, represented by a state vector of

potential particle configurations, each with probability given by the trial wavefunction evaluated at

that configuration. For simplicity, momentarily ignore importance sampling and consider equation

(9). The integral can therefore be interpreted as a state vector being multiplied by a stochastic

matrix, P, with the ijth element representing the transition probability from current state i to

state j. The new state vector obtained can be thought of as a position representation of the new

wavefunction (cf. [5, pp. 175-177,210-211]). Because each iteration is independent of the last, we
2This entails obtaining values along the uniform interval [0, 1], via a seeded deterministic algorithm then trans-

forming these values via an inverse transformation so that they correspond to the appropriate distribution function
(cf. [11, pp. 287-298]).

3cf. [5, p. 172]
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can think of the sequence of iterations as a Markov chain (cf. [11, p. 408]) ultimately converging to

the ground state.

Convergence to the ground state is guaranteed by the Power method (cf. [2, pp. 576-579]) (or

Inverse Power method [2, pp. 583-585], depending on one’s interpretation) as follows:

We can represent the ‘stochastic matrix’ in equation (9) as a constant, A, times an operator, S,

which is the inverse operator of the Hamiltonian (cf. [7, p. 79]). We can then rewrite equation (9)

as

Φn+1 = ASΦn. (13)

Now, expand Φ0 in terms of its eigenfunctions Φ(k), where the Ck are constants:

Φ0 =
∑
k

CkΦ(k). (14)

Since S is the inverse of the Hamiltonian, if E(k) is the eigenvalue of the Hamiltonian corresponding

to Φ(k), then SΦ(k) = Φ(k)

E(k) (cf. [8]). Now, we iterate as follows:

Φ1 = AS
∑
k

CkΦ(k) =
∑
k

CkΦ(k) A

E(k)
, (15)

Φ2 = A2SS
∑
k

CkΦ(k) =
∑
k

CkΦ(k)

(
A

E(k)

)2

, (16)

...

Φn = AnSn
∑
k

CkΦ(k) =
∑
k

CkΦ(k)

(
A

E(k)

)n
. (17)

The ratio A
E(k) has greatest magnitude for the smallest magnitude E(k), which we will denote E(0),

corresponding to the lowest magnitude energy (the ground state energy). As n → ∞, Φn → Φ(0)

times a constant. In other words, after enough4 iterations, the state vector converges to that of the

ground state.
4For the systems considered in this thesis “enough” was found to be O(1000). For further discussion of convergence

see section 3.2.
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2.2 Implementation

While matrix multiplication is one way to interpret the algorithm, implementation in this

manner engenders the problem of computational complexity. Instead of attempting to deal with

every conceivable state, a Monte Carlo implementation allows us to examine an ensemble of a few

relevant configurations, where each configuration is known as a ‘walker’. We implement the iteration

of the integral equation in two parts: a ‘branching part’ and a ‘diffusion part’.5

2.2.1 Branching

The branching term of the integral equation (equation (9)) consists of (cf.[7, 105-107])

[
V (Y)− Vmax
E0 − Vmax

]
. (18)

In the algorithm, we append copies of walkers to the ensemble according to this term, where

the integer value of the sum of the term and a random number sampled from the uniform interval

[0, 1] is the number of clones to append. If this integer is equal to zero, we remove the walker from

the ensemble. We can make physical sense of this as follows: walkers with potential energy less

than E0 are reproduced, whereas walkers with potential energy greater than E0 are removed. This

is easy to visualize in the case of a 1-dimensional harmonic oscillator potential. Walkers in the well

below E0, (i.e. near the ground state) thrive, whereas walkers outside of the well, or in the well at

energies much higher than the ground state die. In short, we can think of the branching part of the

algorithm as a filter which restricts our ensemble of walkers to relevant configurations. Note that

we do not know the ground state energy ahead of time. In this case, E0 is an educated guess for

the ground state energy, commonly referred to as the “trial energy”. We show that E0 converges

to the true ground state energy after many iterations (see equation(21)).

2.2.2 Diffusion

The diffusion term of the integral equation (equation (9)) is (cf.[7, 105-107])

G(Y,X)Φ(Y)dY. (19)
5These implementations come from diffusion and rate equations obtained in the Diffusion Monte Carlo (DMC)

algorithm (cf. [7, pp. 88-92]). Incidentally, GFMC is a time integrated form of DMC.

9



This term dictates the movement of the walkers from configuration Y to X. The diffusion part

of the algorithm is a modification of the Metropolis method (cf. [10]), in which a step in a random

direction on the 3N-dimensional unit hypersphere is attempted, with radius given by sampling the

Green’s function at random. The state change is accepted under the following conditions (cf. [1]).

1. If the ratio Ψ(X)
Ψ(Y) is greater than or equal to 1, then the change is accepted.

2. If Ψ(X)
Ψ(Y) < 1, a random number is sampled from the uniform distribution [0,1]. If the random

number is less than Ψ(X)
Ψ(Y) , the change is accepted. Otherwise the change is rejected and the

walker is removed from the ensemble.

2.2.3 Importance Sampling Revisited

In section 1.2, we introduced an equation which implements importance sampling by introducing

the term Ψ(X)
Ψ(Y) into the integral equation. In our algorithm, we can implement this by assigning

weight W = Ψ(X)
Ψ(Y) to each walker in the diffusion part of the algorithm, provided that the step is

accepted (cf. [1]). In the next iteration of the branching, we multiply this weight by the term in

(18). For a given walker, the branching factor6, MB, becomes

MB = int(W
[
V (Y)− Vmax
E0 − Vmax

]
+ U [0, 1]), (20)

where U([0, 1]) is a random number from the uniform interval [0,1], W is the weight, and int

denotes that we are taking the floor integer value of the quantity in parentheses.

Intuitively, we expect our the algorithm to have faster convergence with importance sampling,

because higher transition probability ratios are weighted more heavily.

2.3 Obtaining the Ground State Energy

So far, we have talked about the algorithm’s convergence properties, but have not explained

how to extract the ground state energy. Fortunately, this is an easy task. Although it is not readily

apparent, we can obtain an estimate of the ground state energy at the nth iteration by taking the

average of the local energies of all the walkers (cf. [1, p. 99]). This is feasible since by definition,
6i.e. the number of copies of a walker to make.
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the expectation value of the local energy is the mean of all the local energies (cf. equation (22)).

The proof goes like7

〈Eloc〉 =

∫
Φ(X)Ψ(X) ĤΨ(X)

Ψ(X) dX∫
Φ(X)Ψ(X)dX

=
∫

Φ(X)ĤΨ(X)dX∫
Φ(X)Ψ(X)dX

= E0

∫
Φ(X)Ψ(X)dX∫
Φ(X)Ψ(X)dX

= E0, (21)

where E0 is the ground state energy. This relationship applies to both GFMC and DMC algorithms.

2.4 Initialization

The algorithm begins by initializing an ensemble of walkers for a given number of particles,

with positions, a trial wavefunction, a potential, and a local energy, each depending on position.

While theoretically, any normalized trial wavefunction should work for the algorithm, good guesses

(i.e. guesses that are close to the actual wave function) are more feasible computationally, as far as

attaining stability in number of walkers and convergence rate. Local energy depends on Ψ as

Eloc =
ĤΨ(X)
Ψ(X)

, (22)

where X is a 3N -dimensional position vector. We must also seed the algorithm with a guess for E0,

which we may change several iterations into the algorithm to be the average of the local energy over

all walkers, in order to accelerate convergence. An energy shift of Vmax is required if we are dealing

with positive potentials, so as to make all energies negative. If we are dealing with potentials that

are unbounded from above, as in the case of the quantum harmonic oscillator, we can still obtain

a valid approximation by choosing Vmax such that Vmax � E0 because practically zero walkers will

sample Eloc > Vmax.

Although initialization may vary depending on the system in question, we use a fairly general

technique of sampling a unit-vector from the 3N -dimensional hypersphere, then assigning a random

magnitude, sampled from whatever distribution best suits the problem. While obtaining a randomly

oriented unit vector is a straightforward task for one, two, or three dimensions, it is not so simple

in 3N -dimensions. We will therefore use a technique elaborated on in the next section.

7Since Ĥ is a hermitian operator, it can legitimately act on Φ from the right.
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2.5 Sampling Techniques

2.5.1 Obtaining a Unit 3N-dimensional Vector

First we randomly sample the Gaussian, e−ζ1
2−ζ12−ζ22−...−ζ3N 2

, 3N times to obtain a vector

(ζ1, ζ2, ..., ζ3N ). Our 3N -dimensional unit vector, (α1, α2, ..., α3N ), has components defined by the

normalization of this vector (cf. [8]),

αi = ζi

∑
j

ζ2
j

− 1
2

. (23)

A quick visual verification of this sampling technique is shown in Figure 1. N was set to 1 and

points were plotted over 1000 iterations. As probability dictates, the resulting plot traces out the

unit sphere.

Figure 1: Direction Sampling Verification
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2.5.2 Sampling the Green’s Function

The diffusion part of the algorithm relies on sampling the Green’s function (equation (10))

at random to determine the magnitude of the attempted step, R. We do so using the following

technique (cf. [8]):

First, we sample a uniform distribution [0,1] 3N+1 times, to get the random numbers, ζ0, ζ1, ζ2, ..., ζ3N .

We then take the negative natural logarithm of the product of the last 3N of these random numbers

and set it equal to u, and call v the square root of one minus the first of these random numbers,

raised to the power of 2/(3N − 1). We therefore have

u = −ln(ζ1ζ2...ζ3N ) (24)

and

v = (1− ζ0
2/(3N−1))

1
2 . (25)

The product, uv, is then equal to the magnitude hyper-radius, R, and is thus equivalent to a random

sample of the Green’s function.

Figure 2: Green’s Function Sampling Verification

This sampling technique was verified by plotting 1,000 normalized ‘bins’ of 100,000 samples
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along with the actual Green’s function (equation 10), shown in red. The results are shown in Figure

2. The fact that the Green’s function is closely approximated by the plot of the bins indicates that

the sampling technique is working correctly.

3 GFMC Results and Discussion

3.1 Summary

The algorithm was tested for quantum harmonic oscillator potentials with one, two, three, and

four non-interacting particles. Convergence was also obtained for Gaussian trial wavefunctions of

different shape and scale parameters than those of the actual wavefunctions. Although average

energies seemed to move in the proper direction for all wavefunctions tested, walker population

explosions made convergence verification impossible when the trial wavefunction differed from the

actual wavefunction by shape and scale parameters of unit order. Certain techniques were used

to attempt to accelerate convergence and keep walker growth in check. Although these techniques

were successful to some degree, the problem of extreme walker population arresting convergence

persisted for many trial wavefunctions. Despite the shortcomings of our current implementation,

we include a description of the technique and a summary of our results so that the code can be

improved in the future.

3.2 Determining Convergence

Because the GFMC algorithm is a stochastic algorithm, we cannot simply assign a tolerance

as one can with deterministic convergent algorithms (e.g., root finding methods). Thus what de-

termines convergence is somewhat of an open question. If the result is known, as is the case with

quantum harmonic oscillator systems, then we can compare the approximated energies directly to

the actual result. The question then becomes how to determine the quality of convergence. Because

a given step is more likely than a series of steps to be an outlier, a less error-prone approach is to

take the average energy and standard deviation over many walker-steps, then compute standard

error. One must be careful, however, not to measure these quantities too early, as this will produce

inaccurate results. There is no general unambiguous way to determine when to start taking aver-

ages, as it depends on how long the algorithm runs, the system in question, initial conditions, and
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the stochastic nature of the algorithm. A general rule of thumb is that asymptotic average walker

energy as a function of step number indicates convergence, since the Power method guarantees

that GFMC will converge exponentially. Therefore, averages should only be taken once sufficient

constancy in energy as a function of step number has been established. “Sufficient constancy”,

however, is subjective to the accuracy desired. Accuracy may be assessed via standard error.8 For

a given number of steps, lower standard error indicates better convergence.

Our methodology for taking averages involved running the algorithm for a given set of param-

eters, examining the results after a given number of iterations, determining when convergence was

attained via the aforementioned methods, and using this step number as baseline to begin taking

averages for ground-state energy determination.

3.3 Accelerating Convergence and Walker Population Control

Given a trial wavefunction, a system converges faster when the estimate of the ground state

energy is near the actual ground state energy. If the actual ground state energy is not known,

however, then a way to accelerate convergence is to set the trial E0 to the average walker energy

for the next iteration, once the algorithm has had a chance to stabilize. This affects the branching

part of the algorithm, and will cause fewer walkers which branch out of control to be created.

3.4 Results for One, Two, and Three Particles in a QHO Potential

We shall now present results, selectively chosen to illustrate some of the more pertinent afore-

mentioned points.

Solutions to the 3N -dimensional isotropic harmonic potential are easily obtained (neglecting

particle interactions), because the Schrödinger equation for this system is separable into 3N one-

dimensional systems. The full ground state wavefunction is

ψ0(X) =
(mω
πh̄

)3N/4
e−

P3N
i=1(Xi

2)/2, (26)

8The central limit theorem guarantees that we may use standard error for GFMC uncertainty estimation (cf. [5,
pp. 161-163]).
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where Xi is the ith component of X, and the potential energy is

V =
1
2
mω2|X|2. (27)

To simplify things for the following test cases, we express everything in units mass m =1 and angular

frequency ω = 1, so that the actual wavefunction becomes

ψ0(X) =
(

1
π

)3N/4

e−
P3N
i=1(Xi

2)/2, (28)

and the potential becomes

V =
1
2
|X|2. (29)

As one can see, the actual wavefunction is a 3N-dimensional Gaussian. A natural choice for

a similar yet incorrect trial wavefunction is a Gaussian of different width. Thus, for our trial

wavefunction, we choose

Ψ(X) =
(

1
π

)3N/4( 1
X0t

)3N/2

e−
P3N
i=1(Xi

2)/2X0t
2

. (30)

where X0t is the standard deviation parameter of the Gaussian, not equal to one.

The local energy for this trial wavefunction is

Eloc =
ĤΨ(X)
Ψ(X)

=
1
2

(
3N∑
i=1

Xi
2

)(
1− 1

X0t
4

)
+

3N
2X0t

2 . (31)

Because the ground state energy of a one-dimensional quantum harmonic oscillator is 1
2 h̄ω, the

ground state energy of a 3N -dimensional harmonic oscillator is 3N
2 h̄ω, or 3N

2 in our units, with

ω = 1 and h̄ = 1.

We initialize the locations of the walkers via the technique discussed in Section 2.4, with radii

randomly sampled from a Gaussian distribution centered at 0 with standard deviation σ = 1/
√

2.

3.4.1 One Particle

Figure 3 illustrates the convergence of the algorithm for one particle in three dimensions. One

particle average energy is shown in blue. Actual ground state energy is shown in red. Ground state
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trial energy was initialized at E0 = 1.7. The initial number of walkers was 1000. X0t was set to

1.5. The maximum ensemble size was 90,000. The average walker energy taken from step 2350 to

2450 (1957239 walkers×steps) was 1.4986 ± 0.0003. Convergence to within 1% of the correct trial

energy of 1.5 occurred after approximately 1000 steps.

Figure 3: One particle average energy vs. step number.

Walker growth as a function of step number is shown in Figure 4. We notice that the walker

growth rate decreases considerably after step 500. This is because the initial estimate for the ground

state energy was 1.7, but was changed to the average energy of the ensemble after 500 steps. As one

can see, this attempt to keep the number of walkers in check was marginally successful. Running

the algorithm without this change caused the ensemble to exceed the maximum allotted ensemble

size of 90,000 before the 1000th step.
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Figure 4: Number of walkers as a function of step number.

3.4.2 Two Particles

Figures 5 and 6 show convergence and walker growth for the two particle case. As one can see,

walker growth is again checked at step 500 by the change of ground state energy guess from 3.2 to the

average local energy of all the walkers. Although iterating the integral equation theoretically gives

exponential convergence, we notice small bumps in the plot in Figure 5. These occur because of the

stochastic nature of the algorithm, and the fact that we cannot represent all possible configurations

simultaneously.

In Figure 5 two particle average energy is shown in blue. Actual ground state energy is shown in

red. Ground state trial energy was initialized at E0 = 3.2. X0t was set to 1.5. The initial ensemble

size was 1,000. The maximum ensemble size was 90,000. Average walker energy from step 800 to

890 (7,764,967 walkers×steps) was 2.9853±0.0003. After step 890, the maximum ensemble size was

exceeded.

Number of walkers as a function of step are shown in Figure 6. Note the effects of changing the

estimate of the ground state energy to the average walker energy at step 500.
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Figure 5: Two particle average energy vs. step number.

Figure 6: Number of walkers as a function of step number.
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3.4.3 Three Particles

Although convergence can be seen for the three particle case, the maximum ensemble size of

90,000 was exceeded before the 500th step in the run shown in Figures 7 and 8. Toggling initial

conditions allowed for a 2500 step trial, although the ensemble size was first changed to 200,000.

In Figure 7, three particle average energy is shown in blue. Actual ground state energy is shown

in red. Ground state trial energy was initialized at E0 = 4.7. X0t was set to 1.2. The initial

ensemble size was 1,000. Maximum ensemble size was 90,000. Average walker energy from step 400

to 433 (2,429,407 walkers×steps) was 4.4734± 0.0006. After step 433, the maximum ensemble size

was exceeded.

Figure 7: Three particle average energy vs. step number.
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Figure 8: Number of walkers as a function of step number.

3.5 Discussion

From our experimental trials, it is apparent that walker growth is a problem, even when the trial

wavefunction is similar to the actual wavefunction. Although increasing the maximum ensemble size

allows the algorithm to run longer, this does not solve the problem at hand of exponential walker

growth, because it buys only a few more iterations before computer RAM limitations become a

problem. Although certain choices of trial E0 limit walker growth, walker population was nonetheless

a problem for any choice we attempted, save for the actual ground state energy.

Additionally, walker growth becomes more of a problem with increases in dimensionality. This

makes sense because for higher dimensions there are more degrees of freedom, and therefore more

states. As one can see, even with a better trial wavefunction, and similar initial conditions to the

previous one and two particle systems, the three particle system exceeded the ensemble size before

the 500th step.

A characteristic of the algorithm which bears mentioning is that for the trials depicted in the

plots, the direction of convergence is opposite of what one might intuit from the variational principle.
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The reason for this is quite straightforward: the intuition is faulty. Quantum Monte Carlo is an

algorithmic technique in which the distribution of walkers converges to the ground state. Until

convergence is reached, however, the walker distribution does not necessarily satisfy the Rayleigh-

Ritz criterion9. Technically, the initial walker layout need not even be normalizable. Moreover,

walkers represent particle configurations; not particles. The probabilty distribution of walkers

converges to the absolute value of the wavefunction10; not |Φ|2. In the absence of importance

sampling, the local energy is the potential energy. A plot of the 1-dimensional QHO with walker

distribution is shown in Figure 9.

Figure 9: Walkers in a one-dimensional, unit width QHO.

As one can see, walker local energy (the potential energy at each walker’s x-coordinate) averages

to the ground-state energy, as predicted by the theorem in equation (21). In short, walkers are

sample points used in statistical estimators for energy and wavefunction. Near the origin, local

energy is less than the ground state energy, and the population density is greater. Farther out, in

the classically forbidden region, where local energy is greater than the ground-state energy, walker

population dwindles. If a walker diffuses toward the center of the well, then the energy of the system

decreases. This has the greatest effect nearest to the center, where the most walkers are cloned.

In the classically forbidden region, walkers will not be cloned. Although a walker is not cloned as

it diffuses into the classically forbidden region, energy contributions increase quadratically, and are
9cf. [4, p. 256]

10cf. equation (21)
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therefore non-negligible.

While our current 3N -dimensional GFMC implementation thus far can compute ground state

energies of certain quantum systems, much refinement is required before it can be used for more

realistic cases. The biggest problem with our current implementation however is the exponential

time and space complexity. As previously mentioned, a key point of Monte Carlo methods is to

avoid this sort of computational complexity. Although aspects of our code work as we would like

them to, until techniques are implemented to stabilize walker population, the code is useless for any

sort of application. We shall therefore turn to the Diffusion Monte Carlo algorithm in an effort to

obtain usable code, and figure out a solution to our walker growth problem in the process.

4 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is another Monte Carlo algorithm which uses a similar walker

implementation to that of GFMC. Incidentally, GFMC is a time-integrated version of DMC. We

turn to DMC at this stage, because it is more widespread, and the extra documentation will make it

easier to modify, debug, and refactor. Unlike GFMC, DMC does not use the exact time-independent

Green’s Function, but rather an approximation to the time-dependent Green’s Function.

4.1 Overview

Given the 3N -dimensional position vector x, the time-dependent Schrödinger equation reads11

−∂Ψ(x, t)
i∂t

= (Ĥ − ET )Ψ(x, t), (32)

in units where h̄ = 1 and ET is an energy shift. We may rewrite this equation in imaginary time

(τ = it) as follows:

−∂Ψ(x, t)
i∂t

= −∂Ψ(x, it)
∂it

= −∂Ψ(x, τ)
∂τ

= [Ĥ − ET ]Ψ(x, τ). (33)

Writing out the Hamiltonian and negating both sides, the equation becomes
11[7, p. 88]
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∂Ψ(x, τ)
∂τ

= D∇2Ψ(x, τ) + (ET − V (x))Ψ(x, τ), (34)

where D = h̄2

2m = 1
2 in atomic units12 is the diffusion coefficient.

Ignoring the second term on the right hand side of the above equation yields

∂Ψ(x, τ)
∂τ

= D∇2Ψ(x, τ), (35)

which is the 3N -dimensional diffusion equation for which there exists an analytical solution. Like-

wise, ignoring the first term on the right hand side of the equation yields

∂Ψ(x, τ)
∂τ

= (ET − V (x))Ψ(x, τ), (36)

which is a first order rate equation, whose solution may also be obtained analytically. Using the

analytical solutions to equations (35) and (36), we may serially simulate these equations for many

small discrete imaginary time steps to obtain an approximation of Ψ(x, τ).13

4.2 Time-Dependent Green’s Function

We require an iterable solution to the ground state wavefunction. With the right Green’s func-

tion, we may transform the imaginary time dependent Schrödinger equation to an integral equation

of the form 14

Ψ(y, τ2) =
∫
G(y, τ2; x, τ1)Ψ(x, τ1)dx. (37)

Now, we can operate on both sides of equation (37) with [Ĥ − ET ] to obtain

[Ĥ − ET ]Ψ(y, τ2) =
∫

[Ĥ − ET ]G(y, τ2; x, τ1)Ψ(x, τ1)dx. (38)

12This assumes equal particle masses, as we are dealing with in this paper. Unequal particle masses would require
considering the sum of three-dimensional Laplacians acting on the position vector of each particle rather than one
3N−dimensional Laplacian acting on the position vector of the configuration (in Cartesian coordinates). Several
different D’s would also be required for unequal masses.

13[7, p. 88]
14[7, p. 84]
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We can also operate with [− ∂
∂τ2

] to obtain

−∂Ψ(y, τ2)
∂τ2

=
∫
−∂G(y, τ2; x, τ1)

∂τ2
Ψ(x, τ1)dx. (39)

Since equations (38) and (39) are equal by equation (33), we can equate their right hand sides15:

−
∫
∂G(y, τ2; x, τ1)

∂τ2
Ψ(y, τ2)dx =

∫
[Ĥ − ET ]G(y, τ2; x, τ1)Ψ(x, τ1)dx. (40)

Simplification yields

−∂G(y, τ2; x, τ1)
∂τ2

= [Ĥ − ET ]G(y, τ2; x, τ1), (41)

indicating that the Green’s function satisfies the exact same form as the wavefunction. Solutions

for both Green’s function and wavefunction will be of the form 16

Ψ(x, τ) =
∞∑
k=0

CkΦk(x)e−(Ek−E0)τ , (42)

and can also be expressed via the time evolution operator17 as

|Ψ(τ2)〉 = [e−(Ĥ−Eτ )(τ2−τ1)]|Ψ(τ1)〉. (43)

Operating with the unity operator 1 =
∫
dx|x〉〈x|, multiplying by 〈y|, and comparing to equa-

tion (39), we find that the Green’s function can be expressed as the matrix element18

G(y, τ2; x, τ1) = 〈y|e−(Ĥ−Eτ )(τ2−τ1)|x〉, (44)

which incidentally depends only on the difference δτ = τ2 − τ1. We now have an iterable integral

equation of the form

Ψ(y, τ + δτ) =
∫
〈y|e−(Ĥ−Eτ )δτ |x〉Ψ(x, τ)dx, (45)

15[7, p. 84]
16[4, p. 23]
17[7, p. 85]
18[7, p. 86]
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in which a stochastic matrix multiplies a state vector to produce a new state vector; similar to

what we observed in GFMC. In this case, however, the Green’s function represents the probability

of a walker transitioning from state x to state y over the imaginary time step δτ . By expanding

the Green’s function in eigenfunctions of the Hamiltonian, it can be shown that Ψ converges to the

ground state wavefunction exponentially with the number of imaginary time steps taken.19

4.3 Implementation

Although we have the form of the integral equation from the previous section, obtaining an

explicit representation of the time-dependent Green’s function is generally not feasible. An approx-

imation may be obtained by factoring the time evolution operator into kinetic and potential energy

components:

e−(Ĥ−Eτ )(δτ) = e−(T̂+V−Eτ )(δτ) = e−T̂ δτe(V−Eτ )δτ +O(δτ2). (46)

Error arising from the commutator of the kinetic and potential energy operators ∼ O(δτ2), so

this approximation is valid only for δτ � 1.20 However, as δτ → 0, the approximation becomes the

exact Green’s function. We may write our Green’s function approximation as

G ≈ GDiffGBranch = e−T̂ δτe(V−Eτ )δτ , (47)

where GDiff is the Green’s function corresponding to the solution of the diffusion equation and

GBranch is the Green’s function corresponding to the solution of the rate equation.

The solution to the diffusion equation is21

Ψ = (4πDτ )−3N/2e−(y−x)2/4Dτ , (48)

and the solution to the branching equation is22

Ψ = e−( 1
2

(V (x)+V (y))−ET )τ , (49)
19[7, pp. 86-87]
20[7, p. 89]
21[7, p. 89]
22[7, p. 89]
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for small time τ = δτ .

By sampling from both distributions over a discrete time step, we are effectively iterating the

integral equation. Now, the diffusion process is easy to simulate given a Gaussian random number

generator. Perhaps the simplest technique is to sample from the one-dimensional solution for each

coordinate of each walker and add the sampled value to the value of the coordinate.

The branching process is similar to that seen in GFMC: since we cannot have a fractional

walker, the continuous probability density function in the branching solution must be converted to

a probability mass function. Again, we may do this by flooring the result plus a uniform, random,

double-precision floating point value on the interval [0, 1]. Thus, the probability mass function that

we will sample from for the branching step is

MB = int(e−( 1
2

(V (x)+V (y))−ET )δτ + U [0, 1]), (50)

Where V (x) and V (y) are the potential energy values for the walker before and after the diffusion

step respectively. As before, MB − 1 copies of the walker are made. If MB < 1, MB − 1 walkers

are removed from the ensemble.

4.4 Parameter Values, Ground-State Energy, and Convergence

Everything discussed vis-a-vis initialization for GFMC applies equally well to DMC. As previ-

ously stated, δτ should be at least an order of magnitude less than 1. We may interpret the walkers

the same way as we did for GFMC as well: after enough iterations, a normalized bin of the walkers

should yield the ground state wavefunction.

During preliminary tests of the DMC code for the one dimensional quantum harmonic oscillator

potential, although the correct ground state wavefunction was obtained, problems of exponential

walker growth occurred (which is the exact behavior we turned to DMC to try and mitigate). These

walker growth problems were rectified by using a technique23 in which trial energy is adjusted for

each step so that the number of walkers remains more or less constant. The technique works as

follows: the program starts out with a user defined number of walkers that we wish to maintain,

which we shall denote NTarget. After the branching process for a given step, if N > Ntarget, we

23This technique and many parts of the working version of the code were adapted from [3].
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increase the trial energy to remove walkers in the next iteration. Likewise, if N < NTarget, then

we increase the trial energy so that more walkers are cloned in the next iteration. After enough

iterations, the trial energy will converge to the ground-state energy. Another way to calculate

ground-state energy besides taking the average of the local energies accross the ensemble is therefore

to average the trial energy over many steps, once it converges to within uncertainty.24 Although

there are multiple ways to adjust the trial energy at each step, a common one is

ET = ET + α

(
NTarget

N

)
, (51)

where α� 1. This technique allows the trial energy to be written in good numerical form, where the

new energy value is equal to the old value plus a small correction.25 This technique fails, however,

if initialization is way off (e.g. if δτ is too large), because too many walkers will be introduced or

removed at each time step for meaningful results (or for internal memory in the extreme cases). This

techniques is derived from the growth energy estimator26, which offers an alternative method for

finding ground state energy than averaging over the local energies of all walkers. We hypothesize

that the technique illustrated in equation (51) will work for GFMC as well, but we have yet to

implement it.

4.5 Preliminary Test Cases

To verify that our DMC code was working properly, we tested several quantum harmonic oscilla-

tor potentials, as we did for GFMC, and compared to the exact result. The table in Figure 10 shows

a comparison of DMC code results for 1,2,3, and 4 particle QHO potentials with actual ground state

energies ( [=] h̄ω). Uncertainty was calculated as standard error. Averages were taken over 5000

steps, starting after 1000 steps. Target walker population was 10000 for 1,2, and 3 particle runs

and 5000 for the 4 particle run. Initial trial energy was 0.0 for all runs.

One notices that the results obtained by the algorithm agree with the analytical solutions within

uncertainty, indicating that the code is working properly. Moreover, walker population was kept
24As previously mentioned, this convergence is attained exponentially. For the systems we examine in this paper,

convergence takes between O(100) to O(1000) steps.
25It does not particularly matter what mathematical form the correction factor takes, as long as it appropriately

adjusts walker population and is small compared to ET .
26cf. [7, p.99]
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Figure 10: DMC results for 1,2,3, and 4 particle QHO potentials.

within a constant range. As expected, this range depends on δτ , and the potential in question.

Walker populations for two different values of δτ are shown in Figure 11.

Figure 11: Walker populations for the one-particle QHO with trial energy initialized at 0.0 and
target walker population set to 10000. This target population is shown in black.

Incidentally, the size of the walker population range is directly related to the precision of re-

sults. As δτ → 0, the walker population becomes constant, and the short-time Green’s function

approximation becomes the exact Green’s function.

Our code appears to be working for the QHO cases, but in order to be positive, we compared

the normalized bin of the walkers to the normalization of the radial wavefunction for the one

particle, three-dimensional QHO, which has form R(r)norm = Ce−r
2/2, where C is the normalization
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constant.27

Since

C

∫ ∞
0

e−r
2/2dr = C

√
π

2
= 1, (52)

the normalization constant is 2√
π

, and the normalization of the wavefunction isR(r)norm = 2√
π
e−r

2/2.

Figure 12 contains a plot of the normalized bin of walkers as a function of radius. Walkers were

binned and counted in a 500 element array, with bin spacing 0.01. The count was then normalized

by dividing by the total number of walkers times the bin spacing. Results were obtained from a

one particle 6000-step DMC run with step size 0.05 and 5000 as the target number of walkers. As

expected, the normalized bin of the walker count with radius traces out R(r)norm.

Figure 12: Normalized bin of DMC walkers and actual wavefunction for the 1-particle QHO.

27cf. Section 5.2
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5 Implementing Particle Interactions

Now that we have tested the code for the several particle QHO potential, we wish to implement

realistic28 pairwise boson interactions of the form

V =
N∑
i=1

∑
j<i

V0e
−|ri−rj |2/r2

0 , (53)

for a system of N particles confined in a harmonic trap.

As previously stated, the raison d’être of quantum numerical solutions is that the Schrödinger

equation for realistic systems generally has no exact analytical solution, and the harmonically

confined boson system is no exception. This presents the problem of verifying whether or not our

implementation of the DMC algorithm is working as it should, once we implement these interactions.

Auspiciously, an analytical approximation of the ground state energy for low-energy interactions

is feasible via first-order perturbation theory. We shall devote the remainder of this section to

obtaining this approximation and compare the result to the output from our DMC program.

5.1 First-Order Perturbation Theory

Time-independent perturbation theory yields an approximation to the ground state energy for

a system that is similar to a system for which an exact analytical solution is known. In our case,

there exists an analytical solution to the N -particle quantum harmonic oscillator, the unperturbed

configuration, and we wish to obtain an approximation to the ground state energy of an N -particle

system, harmonically bound with pairwise Gaussian interactions of the form V0e
−|ri−rj |2/r2

0 . If

the energy contributions from the particle interactions are small (V0 � h̄ω), then we can apply

first-order perturbation theory to obtain a solution to within DMC uncertainty.

The idea of perturbation theory is to write out the Hamiltonian operator of the perturbed

configuration in terms of the Hamiltonian operator of the unperturbed configuration plus a small

correction, so that

H = H0 + λH ′, (54)

where H0 is the unperturbed Hamiltonian operator, H is the perturbed Hamiltonian operator, λ
28[9]
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is constant, and H ′ is the Hamiltonian operator of the perturbation (cf. [4, pp.221-223]). By

expanding the ground state wavefunction and energy of the new Hamiltonian operator as a power

series in λ about the corresponding wavefunction and energy values for the unperturbed Hamiltonian

operator, we can write the the Schrödinger equation for the perturbed system as

(H0 + λH ′)ψnew0 = Enewψnew0, (55)

with ψnew and Enew expressed as power series. By power matching, we can set first-order λ

coefficients on the left hand side of the equation equal to first-order λ coefficients on the right hand

side of the equation. Taking the inner product with 〈ψ0
0| and recognizing orthonormality leaves us

with the result that

E0
1 = 〈ψ0

0|H ′|ψ0
0〉, (56)

where E0
1 is the first-order energy correction. In our case, H ′ will simply be the change,∑N

i=1

∑
j<i V0e

−
|~rj−~ri|

2

r0
2 , to the potential energy of the system due to particle interactions. Hence,

given the N -particle QHO ground state wavefunction, Ψ0, the ground state energy of the confined

system will be changed by

∆E = 〈Ψ0|
N∑
i=1

∑
j<i

V0e
−
|~rj−~ri|

2

r0
2 |Ψ0〉 (57)

when Gaussian interactions are accounted for.

5.2 Jacobi Coordinates

The expression in equation (57) for the change in energy due to pairwise particle interactions,

though straightforward to obtain is somewhat cumbersome to evaluate, since it involves a 3N -

dimensional Gaussian integral. Although there may be multiple methods for attacking this monster,

the method we will use involves a transformation to Jacobi coordinates. Therefore, a brief discussion

of these coordinates is in order.

The term “Jacobi coordinates” actually refers to several different coordinate systems. We are

interested in K-type Jacobi coordinates (cf. [12, pp.36-38]), which are constructed iteratively. The

first Jacobi vector, ~ρ1 points from the center of mass of particle 1 to the center of mass of particle

32



2. The second Jacobi vector, ~ρ2 points from the center of mass of particles 1 and 2 to the center of

mass of particle 3. The third Jacobi vector, ~ρ3, points from the center of mass of particles 1,2, and

3 to the center of mass of particle 4, and so on. There is also a center of mass vector from the origin

of the Cartesian coordinate system to the center of mass of all N particles. Thus, for a 4-particle

system, a K-type Jacobi coordinate scheme would be29

~ρ1 = ~r1 − ~r2 (58)

~ρ2 =
m1~r1 +m2~r2

m1 +m2
− ~r3 (59)

~ρ3 =
m1~r3 +m2~r2 +m3~r3

m1 +m2 +m3
− ~r4 (60)

~Xcm =
m1~r3 +m2~r2 +m3~r3 +m4~r4

m1 +m2 +m3 +m4
, (61)

and is illustrated in Figure 13.

Figure 13: The K-type Jacobi coordinate system in equations (58)-(61). Notice the K-shape of the
Jacobi vectors (shown in green).

Jacobi coordinates are convenient when dealing with spherically symmetric potentials, because

solutions are separable into relative and center-of-mass terms (cf. [9]). Moreover, if an isotropic
29[12, pp.36-38]
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change is introduced to the potential (e.g. Gaussian particle interactions) it will not affect the

center of mass solution and only the relative equation need be considered.

5.3 2-Particle Perturbation Theory Solution

We first consider the solution to the two-particle system, as it will be readily generalizable to

the N -particle system. Applying first-order perturbation theory indicates that the change in energy

due to the particle interactions will be

∆E = 〈Ψ0|V1,2|Ψ0〉

= V0

∫
D
e−(x1

2+y1
2+z12+x2

2+y2
2+z22)e−((x1−x2)2+(y1−y2)2+(z1−z2)2)/r02

dx1dy1dz1dx2dy2dz2,
(62)

a six-dimensional integral, with integration domain (D) ranging from −∞ to∞ over all six Cartesian

coordinates. Evaluation appears impossible at first (Try it!). While this integral could be evaluated

numerically via composite Simpson integration or Gaussian quadrature, we may obtain an exact

analytical solution by separating the Hamiltonian into center of mass and relative components and

considering only the relative wavefunction.30 Although this technique will produce an apparently

different matrix element, separation of variables guarantees that it will evaluate to the same result

as the integral in equation (62). Hence, we may write

∆E = 〈ψ0rel|V12|ψ0rel〉, (63)

where ψ0rel is the relative ground-state wavefunction for the 6-dimensional quantum harmonic

oscillator, and V12 = V0e
− |~r1−~r2|

2

r0
2 .

We now introduce a transformation to Jacobi coordinates where

~ρ = ~r1 − ~r2 (64)

and
30This may be done because isotropic pairwise interactions have no effect on the center of mass behavior of the

system ( cf. [9]).
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~Xcm =
m1~r1 +m2~r2

m1 +m2
. (65)

The relative Schrödinger equation becomes31

[
− h̄

2

2µ
∇ρ2 +

1
2
µω|~ρ|2

]
ψrel = Eψrel, (66)

where µ = m1m2
m1+m2

is the reduced mass of both particles. Because we are dealing with an isotropic

potential, we are guaranteed separable solutions for both magnitude and directional components of

~ρ. Hence, it is convenient to adopt spherical coordinates, where

ψ0rel = ψ0rel(ρ, θ, φ) = R(ρ)Y (θ, φ). (67)

The spherical harmonics in this case are the same as for the hydrogen atom32:

Y (θ, φ) =

√
1

4π
. (68)

Therefore, all that remains for us to do is to solve for R(ρ). Note that we need only consider

the ρ terms of the spherical Laplace operator in the radial equation, which becomes

[
− h̄

2

2µ
1
ρ2

d

dρ

(
ρ2 d

dρ

)
+

1
2
µωρ2

]
R = ER. (69)

Making the change of variables u(ρ) = R(ρ)/ρ, causes the equation to become

[
− h̄

2

2µ
d2

dρ
+

1
2
µωρ2

]
u = Eu, (70)

which is simply the one-dimensional quantum harmonic oscillator time-independent Schrödinger

equation with different boundary conditions. Specifically, these boundary conditions are necessary

to keep R normalizable. Normalization requires that u → 0 as ρ → ∞ and u → 0 as ρ → 0. We

know, from the standard power-series solution to the one-dimensional QHO equation, that the first

solution which accommodates this boundary behavior corresponds to the first odd coefficient of the
31[9]
32cf. [4, p.128]
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power series (cf.[4, pp.37-41]). Thus, the solution to the u equation will be the first excited state

solution to the one-dimensional quantum harmonic oscillator with a different normalization range.

For the one-dimensional QHO case, the limits on x for the normalization integral went from −∞

to ∞. For the u equation, however, the limits on ρ go from 0 to ∞. Hence, normalization demands

that

∫ ∞
0

u∗udρ =
∫ ∞
−∞

ψ1D
∗ψ1Ddx = 1. (71)

Since u is real u∗u is simply equal to u2. By symmetry, the normalized u solution is
√

2 times

the normalized first excited state solution to the one-dimensional QHO equation, and reads33

u = 2
(
µω

πh̄

) 1
4
√
µω

h̄
ρe−(µω

h̄
ρ2)/2. (72)

Dividing by ρ,

R = 2
(

1
π

) 1
4
(
µω

h̄

) 3
4

e−(µω
h̄
ρ2)/2, (73)

and the relative ground state wavefunction becomes

ψ0rel = R(ρ)Y (θ, φ) =
(

1
π

) 3
4
(
µω

h̄

) 3
4

e−(µω
h̄
ρ2)/2. (74)

An inner product will confirm that this solution is normalized. While the relative ground state

energy is not necessary for our perturbation theory solution, since we only care about change in

energy, it is worth noting that E0rel = 3
2 h̄ω.

Now that we have the relative wavefunction, we can obtain the energy change due to the pertur-

bation. Since we are currently concerned with particles of unit mass in a unit width well (in atomic

units), we may replace h̄ and ω in equation (74) with 1, and the reduced mass factor (µ) with 1
2 .

The inner product becomes

∆E = 〈ψ0rel|V1,2|ψ0rel〉 = V0

∫ 2π

0

∫ π

0

∫ ∞
0

ρ2

(
1
2

) 3
2
(

1
π

) 3
2

e−
ρ2

2 e
− ρ2

r0
2 sin θdρdθdφ. (75)

An evaluation of the angular coordinates yields
33cf. [4, 41]
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∆E = 〈ψ0rel|V1,2|ψ0rel〉 = 4πV0

(
1
2

)(
1
π

) 3
2
∫ ∞

0
ρ2e
−ρ2( 1

2
+ 1
r0

2 )
dρ, (76)

which evaluates analytically to

∆E(V0) =
V0

(1 + 2
r02 )

3
2

. (77)

This result can be confirmed numerically for several r0 values by partitioning the integral in

equation (62) into the product of three double-integrals times V0 (one integral for each Cartesian

coordinate pair). Since each double integral evaluates to the same result, this is equivalent to

multiplying V0 by the the cube of the result of one double integral. The double-integral can be

evaluated by transforming to polar coordinates, evaluating the angular portion analytically, then

evaluating the radial portion via composite Simpson 3
8 integration. If our DMC code is working

properly, we expect a plot of ground-state energy vs. V0 obtained from the program to have the

same slope as the perturbation result for a fixed r0 value.

5.4 N-Particle Perturbation Theory Solution

We now generalize our perturbation-theory solution to the N -particle case, where the change in

energy due to the perturbation is the matrix element

∆E = 〈Ψ0|
N∑
i=1

∑
j<i

V0e
−
|~ri−~rj |

2

r0
2 |Ψ0〉

=
∫
D

N∑
i=1

∑
j<i

V0e
−
|~ri−~rj |

2

r0
2 e−(x1

2+y1
2+z12+...+xN

2+yN
2+zN

2)dx1dy1dz1 . . . dxNdyNdzN ,

(78)

a 3N -dimensional integral, with integration domain (D) ranging from −∞ to ∞ over all 3N

Cartesian coordinates. The result of this integral is equal to the 3(N − 1)-dimensional integral

∆E = 〈ψ0rel|V0

∑
k

e
− ρi

2

r0
2 |ψ0rel〉 = V0

∫ ∞
0

. . .

∫ ∞
0

∑
k

e
− ρi

2

r0
2 (ψ0rel(ρ))2d3ρ1 . . . d

3ρ(N−1) (79)

37



in Jacobi coordinates, where k corresponds to the ith and jth particle indices in Cartesian co-

ordinates. Now, we wish to obtain ψ0rel. Since the D-dimensional quantum harmonic oscillator

is separable into D one-dimensional quantum harmonic oscillators, and each harmonic oscillator’s

solution is separable into relative and center-of-mass components, the relative 3(N − 1) dimen-

sional Jacobi coordinate wavefunction is separable into N − 1 three-dimensional Jacobi coordinate

wavefunctions. We found the three-dimensional Jacobi coordinate wavefunction to be

ψ0rel = R(ρ)Y (θ, φ) =
(

1
π

) 3
4
(
µω

h̄

) 3
4

e−(µω
h̄
ρ2)/2, (80)

in section 5.3. By separation of variables, the 3(N − 1)-dimensional wavefunction is

ψ0rel =
(

1
π

) 3(N−1)
4
(
µω

h̄

) 3(N−1)
4

e−(µω
h̄

(ρ1
2+ρ2

2+...+ρ(N−1)
2)/2, (81)

where ~ρi = ~ri − ~rj ; j < i. Note that we are exploiting isotropic symmetry by treating each particle-

pair with a different K-type Jacobi coordinate scheme. Because there is no quantitative distinction

between each Jacobi coordinate in equation (81), the inner product 〈ψ0rel|
∑

k e
− ρi

2

r0
2 |ψ0rel〉 is equiv-

alent to
∑

k〈ψ0rel|V0e
− ρi

2

r0
2 |ψ0rel〉. Now, for each element of the sum, the components terms of ψ0rel

that do not involve ρi effectively become one, allowing the inner product to be written as the sum

of two-particle perturbations,

∆E =
∑
k

V0

(1 + 2
r02 )

3
2

. (82)

Now all that remains is to figure out the range of the k-index. For this, we use elementary

combinatorics. Since we are considering the total number of particle pair interactions, without

replacement, without regard to order, the sum will range from 1 to
(
N
2

)
for N -particles. There-

fore, the change in energy as a result of the aforementioned Gaussian particle interactions can be

approximated as

∆E =
(
N

2

)
V0

(1 + 2
r02 )

3
2

=
V0N(N − 1)

2(1 + 2
r02 )

3
2

(83)

for the N -particle system.
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5.5 Comparison of First-Order Perturbation Theory Approximation with DMC

Results

The plots in Figure 14 contain comparisons of ground state energies obtained via DMC and

first-order perturbation theory approximations. In the perturbative regime, where the magnitude

of the perturbation is no greater than an order of magnitude less than the ground state energy, the

results agree to within DMC uncertainty, with an osculation point at V0 = 0.

As the magnitude of V0 increases, higher-order terms in the power series become non-negligible

and the linear extrapolation becomes progressively worse. This is exactly the physical behavior

that we would expect, indicating that the DMC code is working properly for bosons with pairwise

Gaussian interactions in a harmonic trap. Additionally, rate of deviation from the first-order result

for constant V0 increases as O(N2) as additional particles are added,34 as we would also expect, since

more particles confined to the same volume result in a higher magnitude relative energy system,

depending on the whether the attractions are attractive or repulsive.35

34cf. equation (83)
35This alludes to the concept of quantum pressure.
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d.) 

 
 

Figure 14: DMC results and first-order perturbation theory predictions for harmonically confined
bosons with pairwise Gaussian interactions.
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6 Conclusion

We have presented two Monte Carlo Algorithms which can be used to compute the ground

state energies of bound quantum multi-particle systems. Both GFMC and DMC algorithms have

their inherent advantages and disadvantages. GFMC has the advantage that it uses an exact

Green’s function and is therefore more accurate. A key tradeoff, however, which perhaps accounts

for the widespread favortism of DMC is that GFMC requires esoteric probability density function

transformations, which are error-prone and time-consuming to implement, especially in the low-level

compiled languages (e.g. C++ or Fortran) necessary for runtime considerations.

An implementation of the Green’s Function Monte Carlo algorithm was used to correctly com-

pute the ground state energies of the 3N -dimensional quantum harmonic oscillator. Although the

problem of walker growth for this algorithm has not yet been corrected, the solution utilized for

DMC of changing the trial energy should work equally well in GFMC. The Diffusion Monte Carlo

algorithm was used to compute the ground state energies for realistic harmonically confined systems

of bosons with pairwise Gaussian interactions, for which there exist no analytical solutions. The

veracity of this DMC approximation was verified via a first-order perturbation approximation.

With little extension, this DMC code may be used to model condensed matter problems with

tens, or perhaps hundreds of particles in polynomial time, which cannot be done with traditional

techniques such as matrix diagonalization, or finite-difference mesh methods, which go as O(eN ).36

Since exponential time complexity is not resolvable, irrespective of technological advances, Monte

Carlo algorithms have and will continue to have a necessary role in many-particle quantum mechan-

ics.

36The specific time complexity on the DMC problem for Gaussian particles in a harmonic trap is O(N2), which is
a consequence of pairwise interactions and can be seen in the N -particle perturbation theory approximation.
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