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Abstract—Development of generic and autonomous anti-malware solutions is becoming increasingly vital as the deployment of stealth
malware continues to increase at an alarming rate. In this paper, we survey malicious stealth technologies as well as existing
autonomous countermeasures. Our findings suggest that while machine learning offers promising potential for generic and
autonomous solutions, both at the network level and at the host level, several flawed assumptions inherent to most recognition
algorithms prevent a direct mapping between the stealth malware recognition problem and a machine learning solution. The most
notable of these flawed assumptions is the closed world assumption: that no sample belonging to a class outside of a static training set
will appear at query time. We present a formalized adaptive open world framework for stealth malware recognition, relating it
mathematically to research from other machine learning domains.
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1 INTRODUCTION

MALWARES have canonically been lumped into cate-
gories such as viruses, worms, Trojans, rootkits, etc.

Today’s advanced malwares, however, often include many
components with different functionalities. For example, the
same malware might behave as a virus when spreading
over a host, behave as a worm when propagating through a
network, exhibit botnet behavior when communicating with
command and control (C2) servers or synchronizing with
other infected machines, and exhibit rootkit behavior when
concealing itself from an intrusion detection system (IDS).
A thorough study of all aspects of malware is important
for developing security products and computer forensics
solutions, but stealth components pose particularly difficult
challenges. The ease or difficulty of repairative measures is
irrelevant if the malware can evade detection in the first
place. While some authors refer to all stealth malwares as
rootkits, the term rootkit properly refers to the modules that
redirect code execution and subvert expected operating sys-
tem functionalities for the purpose of maintaining stealth.
With respect to this usage of the term, rootkits deviate
from other stealth features such as elaborate code mutation
engines that aim to change the appearance of malicious code
so as to evade signature detection without changing the
underlying functionality.

As malwares continue to increase in quantity and sophis-
tication, generic and autonomous solutions are becoming
increasingly necessary. Machine learning offers tremendous
potential to aid in stealth malware intrusion recognition, but
there are still serious disconnects between many machine
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learning based intrusion detection “solutions” presented by
the research community and those actually fielded in IDS
software. Robin and Paxson [1] discuss several factors that
contribute to this disconnect and suggest useful guidelines
for applying machine learning in practical IDS settings.
Although their suggestions are a good start, we contend that
refinements must be made to machine learning algorithms
themselves in order to effectively apply such algorithms to
the recognition of stealth malware. Specifically, there are
several flawed assumptions inherent to many algorithms
that distort their mappings to realistic stealth malware
intrusion recognition problems. The chief among these is
the closed-world assumption – that only a fixed number of
known classes that are available in the training set will be
present at classification time.

In Sec. 2 we present the problems inherent to stealth
malware by providing a comprehensive survey of stealth
malware technologies, with an emphasis on rootkits and
code obfuscation. In Sec. 3, we discuss stealth malware
countermeasures, which aim to protect the integrity of areas
of systems known to be vulnerable to attacks. These include
network intrusion recognition countermeasures as well as
host intrusion recognition countermeasures. Our discussion
highlights the need for these methods to be combined with
more generic recognition techniques. In Sec. 4, we discuss
some of these more generic stealth malware countermea-
sures in the research literature, many of which are based on
machine learning. In Sec. 5, we identify six critical flawed
algorithmic assumptions that hinder the utility of machine
learning approaches for malware recognition and more
generic IDS domains. We then formalize an adaptive open
world framework for stealth malware recognition, bringing to-
gether recent advances in several areas of machine learning
literature including intrusion detection, novelty detection,
and other recognition domains.
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Our contributions are as follows:

• We present the first comprehensive academic survey of
stealth malware technologies and countermeasures. There
have been several light and narrowly-scoped aca-
demic surveys on rootkits [2], [3], [4], and many
broader surveys on the problem of intrusion detec-
tion, e.g. [5], [6], [7], some specifically discussing
machine learning intrusion detection techniques [1],
[8], [9], [10]. However, none of these address the
more general problem of stealth malware in depth.
Our survey is broader in scope and more rigorous in
detail than any existing academic rootkit survey and
provides not only detailed discussion of the mechan-
ics of stealth malwares that goes far beyond rootkits,
but an overview of countermeasures, with rigorous
mathematical detail and examples for machine learn-
ing countermeasures.

• We analyze six flawed assumptions inherent to many
machine learning algorithms which hinder their appli-
cation to stealth malware intrusion recognition and
other IDS domains.

• We propose an adaptive open world mathematical frame-
work for stealth malware recognition which obviates the
six inappropriate assumptions. Mathematical proofs
of relationships to other intrusion recognition al-
gorithms/frameworks are included, and the formal
treatment of open world recognition is mathemati-
cally generalized beyond previous work on the sub-
ject.

Although malwares exist in all operating systems, we
will mainly provide examples for Microsoft Windows sys-
tems, simply because malware for the Windows operating
system family is more prevalent than for any other oper-
ating system family to date. Unix/Linux rootkits shall also
be discussed because the development of Unix rootkits pre-
dates the development of Windows. Any system call will
be marked in a special font, while proper nouns are
highlighted differently.

2 A SURVEY OF EXISTING STEALTH MALWARE

We discuss four types of stealth technology: rootkits, code
mutation, anti-emulation, and targeting mechanisms. Before
getting into the details of each, we summarize them at a high
level.

Rootkit technology refers to software designed for two
purposes: Maintaining stealth presence and allowing contin-
ued access to a computer system. The stealth functionality
includes hiding files, hiding directories, hiding processes,
masking resource utilization, masking network connections,
and hiding registry keys. Not all rootkit technology is
malicious, for example, some anti-malware suites use their
own rootkit technologies to evade detection by malware.
Samhain [11], [12], for example, was one of the first pieces
of anti-malware (specifically anti-rootkit) software to hide
its own presence from the system, such that a malware
or hacker would not be able to detect and, thus, kill off
the Samhain process. Whether rootkit implementations are
designed for malicious or benign applications, many of
the underlying technologies are the same. In short, rootkits

can be thought of as performing man-in-the-middle attacks
between different components of the operating system. In
doing so, different rootkit technologies employ radically
different techniques. In this section, we review four different
types of rootkits.

Code mutation, unlike rootkit technologies, does not aim
to change the dynamic functionality of the code. Instead it
aims to alter the appearance of code with each generation,
generally at the binary level, so that copies of the code can-
not be recognized by simple pattern-matching algorithms.

Due in part to the difficulties of static code analysis, and
in part to protect system resources, the behavior of suspi-
cious executables is often analyzed by running these exe-
cutables in virtual sandboxed environments. Anti-emulation
technologies aim to detect these sandboxes; if a sandbox is
detected, they alter the execution flow of malicious code in
order to stay hidden.

Finally, targeting mechanisms seek to manage the spread
of malware and therefore minimize risk of detection and
collateral damage, allowing it to remain in the wild for a
longer period of time.

2.1 Type 1 Rootkits: Malicious System Files on Disk
The first-generation of rootkits masqueraded as disk-
resident system programs (e.g., ls, top) on early Unix
machines, pre-dating the development of Windows.These
early implementations were predominantly designed to ob-
tain elevated privileges, hence the name “rootkit”. Mod-
ern rootkit technologies are designed to maintain stealth,
perform activity logging (e.g., key logging), and set up
backdoors and covert channels for command and control
(C2) server communication.

Although modern rootkits (types 2, 3, and 4) rely on priv-
ilege escalation for their functionalities, their main objective
is stealth (although privilege escalation is often assumed)
[13]. Since first-generation rootkits reside on disk, they are
easily detectable via a comparison of their hashes or check-
sums to hashes or checksums of system files. Due to early
file integrity checkers such as Tripwire [14], first-generation
rootkits have greatly decreased in prevalence and modern
rootkits have trended toward memory residency over disk
residency. This should not be conflated with saying that
modern malwares are trending away from disk presence. As
we shall see below, many modern rootkits are specifically
designed to intercept calls that enumerate files associated
with a specific malware and hide these files from the file
listing.

2.2 Type 2 Rootkits: Hooking and in-Memory Redirec-
tion of Code Execution
Second-generation rootkits hijack process memory and di-
vert the flow of code execution so that malicious code gets
executed. This rootkit technique is generally referred to
as hooking. However, some authors use the term to refer
specifically to modification of function pointers to point
to malicious code. Such authors would not, for example,
consider inline function patching – an approach involving
overwriting of code – to be a form of hooking. For read-
ability, however, we use the term hooking to refer to any
in-memory redirection of code execution.
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Rootkits use hooking to alter memory so that malicious
code gets executed, usually prior to or after the execution
of a legitimate operating system call. This allows the rootkit
to filter return values or functionality requested from the
operating system. There are three types of hooking: user
space hooking, kernel space hooking, and hybrid hooking.

Hooking in general is not an inherently malicious tech-
nique. Legitimate uses for hooking exist, including hot
patching, monitoring, profiling, and debugging. Hooking is
generally straightforward to detect, but distinguishing legit-
imate hooking instances from (malicious) rootkit hooking is
a challenging task.

2.2.1 User-Mode Hooking

To improve resource utilization and to provide an organized
interface to request kernel resources from user space, much
of the Win32 API is implemented as dynamically linked
libraries (DLLs) whose callable functions are accessible via
tables of function pointers. DLLs allow multiple programs
to share the same code in memory without requiring the
code to be resident in each program’s binary [15]. In and
of themselves, DLLs are nothing more than special types
of portable executable (PE) files. Each DLL contains an
export address table (EAT) of pointers to functions that can
be called outside of the DLL. Other programs that wish
to call these exported functions generally have an import
address table (IAT) containing pointers to the DLL functions
in their PE images in memory. This lays the ground for the
popular user-mode rootkit exploit known as IAT hooking,
in which the rootkit changes the function pointers within
the IAT to point to malicious code. Fig. 1 illustrates both
malicious and legitimate usages of IAT hooks. In the context
of rootkit IAT hooking, the functions hooked are almost
always operating system API functions and the malicious
code pointed to by the overwritten IAT entry, in addition
to its malicious behavior, almost always makes a call to the
original API function in order to spoof its functionality. Prior
to or after the original API call, however, the malicious code
causes the result of the library call to be changed or filtered.
By interposing the FindFirstFile and FindNextFile
Win32 API calls, for example, a rootkit can selectively filter
files of specific unicode identifiers so that they will not
be seen by the caller. This particular exploit might involve
calling FindNextFile multiple times within the malicious
code to skip over malicious files and protect its stealth.

IAT hooking is nontrivial and has its limitations, for
example, it requires the PE header of the target binary to
be parsed and the correct addresses of target functions to be
identified. Practically, IAT hooking is restricted to OS API
calls, unless specifically engineered for a particular non-
API DLL. An additional difficulty of IAT hooking is that
DLLs can be loaded at different times with respect to the
executable launch [16]. DLLs can be loaded either at load
time or at runtime of the executable. In the latter case, the
IAT does not contain function pointers until just before
they are used, so hooking the IAT is considerably more
difficult. Further, by loading DLLs with the Win32 API calls
LoadLibrary and GetProcAddress, no entries will be
created in the IAT, making the loaded DLLs impervious to
IAT hooking [15], [16].

Inline function patching, a.k.a. detouring, is another com-
mon second-generation technique, which avoids some of the
shortcomings of IAT hooking [16]. Unlike function pointer
modification, detouring uses the direct modification of code
in memory. It involves overwriting a snippet of code with
an unconditional jump to malicious code, saving the stub of
code that was overwritten by the malicious code, executing
the stub after the malicious code, and possibly jumping
back to the point of departure from the original code so
that the original code gets executed – a technique known as
trampolining [16].

In practice, overwriting generic code segments is dif-
ficult for several reasons. First, stub-saving without cor-
rupting memory is inherently difficult. Second, the most
common instruction sets, including x86 and x86-64, are
variable-length instruction sets, meaning that disassembly
is necessary to avoid splitting instructions in a generic
solution. Not only is disassembly a high overhead task for
stealth software, but even with an effective disassembly
strategy, performing arbitrary jumps to malicious code can
result in unexpected behavior that can compromise the
stealth of the rootkit. Consider, for example, mistakenly
placing a jump to shell code and back into a loop that
executes for many iterations. One execution of the shell
code might have negligible overhead, but a detour placed
within an otherwise tight loop may have a noticeable effect
on system behavior.

Almost all existing Windows rootkits that rely on inline
function patching consequently hook in the first few bytes
of the target function [16]. In addition to the fact that an
immediate detour limits the potential for causing strange
behaviors, many Windows compilers for x86 leave 5 NOP
bytes at the beginning of each function. These bytes can
easily be replaced by a single byte jump opcode and a 32
bit address. This is not an oversight. Rather, like hooking
in general, detours are not inherently malicious and have
a legitimate application, namely hot patching. Hot patching
is a technique, which uses detours to perform updates to
binary in memory. During hot patching, an updated copy
of the function is placed elsewhere in memory and a jump
instruction with the address of the updated copy as an argu-
ment is placed at the beginning of the original function. The
purpose of hot patching is to increase availability without
the need for program suspension or reboot [17]. Microsoft
Research even produced a software package called Detours
specifically designed for hot patching [17], [18]. In addition,
detours are also used in anti-malware [16]. Like IAT hooks,
detours are relatively easy to detect. However, the legitimate
applications of detours are difficult to distinguish from
rootkit uses of detours.

Detours are also not limited in scope to user mode API
functions. They can also be used to hook kernel functions.
Regardless of the hooking strategy, when working in user
mode, a rootkit must place malicious code into the address
space of the target process. This is usually orchestrated
through DLL injection, i.e., by making a target process load
a DLL into its address space. Having a process load a DLL
is common, so common that DLL injection can simply be
performed using Win32 API functionality. This makes DLL
injections easy to detect. However, discerning benign DLL
injections from malicious DLL injections is a more daunting
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(a) Normal Operation
(b) Infected Operation

Fig. 1: HOOKING. This figure shows an example of code redirection on shared library imports. (a) displays the normal operation of API calls,
where API pointers of the DLL’s EAT are copied into the executable’s IAT. (b) shows how IAT hooking injects (malicious) code from a user
DLL before executing the original API call 1.

task.
Three of the most common DLL injection techniques

are detailed in [19], [20], [21]. The simplest technique
exploits the AppInit call, which proceeds as follows: A
DLL, containing a DllMain function is written, optionally
with a payload to be executed. The DLL main function
takes three arguments: a DLL handle, the reason for the
call (process attach/detach or thread attach/detach), and a
third value which depends on whether the DLL is statically
or dynamically loaded. By changing the value of the
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows
NT\CurrentVersion\Windows registry key to include
the path to the DLL to be executed, and changing the
LoadAppInit_DLLs registry key’s value to 1, whenever
any process loads User32.DLL, the injection DLL will also
be loaded and the DllMain functionality will be executed.
Although the DLL gets injected only when a program
loads User32.dll, User32.dll is prevalent in many
applications, since it is responsible for key user interface
functionality. Whether or not DllMain calls malicious
functionality, the AppInit technique can be used to inject
a DLL into an arbitrary process’s address space, as long
as that process calls functionality from User32.dll.
Note that, although the injection itself involves setting a
registry key, which could indicate the presence of a rootkit,
the rootkit can change the value of the registry key once
resident in the target process’ address space [16].

A second method of DLL injection exploits Windows
event hook chains [20], [22], [23]. Event hook chains are
linked lists containing function pointers to application-
defined callbacks. Different hook chains exist for different
types of events, including key presses, mouse motions,
mouse clicks, and messages. Additional procedures can be
inserted into hook chains using the SetWindowsHookEx
Win32 API call. By default, inserted hook procedures are
placed at the front of a hook chain. Upon an event asso-
ciated with a particular hook chain, the operating system
sequentially calls functions within the hook chain. Each
hook function determines whether it is designed to handle
the event. If not, it calls the CallNextHookEx API function.
This invokes the next procedure within the hook chain.
There are two specific types of hook chains: global and
thread specific. Global hooks monitor events for all threads

within the calling thread’s desktop, whereas thread-specific
hooks monitor events for individual threads. Global hook
procedures must reside in a DLL disjoint from the calling
thread’s code, whereas local hook procedures may reside
within the code of the calling thread or within a DLL.

For hook chain DLL injection a support program is
required, as well as a DLL exporting the functionality to
be hooked. The attack proceeds as follows: The support
program gets a handle to the DLL and obtains the address
of one of the exported functions through Win32 API calls.
The support program then calls the SetWindowsHookEx
API function passing it the action to be hooked and
the address of the exported function from the DLL.
SetWindowsHookEx places the hook routine into the hook
chain of the victim process, so that the DLL functionality
is invoked whenever a specified event is triggered. When
the event first occurs, the OS injects the specified DLL into
the process’s address space, which automatically causes the
DllMain function to be called. Subsequent events do not
require the DLL to be reloaded since the DLL’s exports get
called from within the victim process’s address space. An
example keylogger rootkit is shown in Fig. 2. Again, benign
addition of hook chain functions via SetWindowsHookEx
is common, e.g., to decide which window/process should
get the keystroke; the difficult task is determining if any of
the added functions are malicious.

A third common DLL injection strategy involves cre-
ating a remote thread inside the virtual address space of
a target process using the CreateRemoteThread Win32
API call [21]. The injection proceeds as follows: A support
program controlled by the malware calls OpenProcess,
which returns a handle to the target process. The sup-
port program then calls GetProcAddress for the API
function LoadLibraryA. LoadLibraryA will be accessi-
ble from the target process because this API function is
part of kernel32.dll, a user space DLL from which
every Win32 user space process imports functionality. To
insert the exported function name into the target pro-
cess’s address space, the malicious process must call the
VirtualAllocEx API function. This API function allocates
a virtual memory range within the target process’s address
space. The allocation is required in order to store the name
of the rootkit DLL function. The WriteProcessMemory
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Keystroke

Function	1

Function	1
		Callback

Windows	Hook	Setting
		.	.	.
HINSTANCE	hInstance	=	GetModuleHandle(NULL);
SetWindowsHookEx(
										 					WH_KEYBOARD_LL,
										 					KeyLogger,
										 					hInstance,	0);
		.	.	.	

Function	2

Function	2
		Callback

Function	0

KeyLogger

Fig. 2: EXPLOITING EVENT HOOK CHAINS. A prototypical keylogger application gets the target process’s context, injects a malicious DLL
into its address space, and prepends a function pointer to code within this DLL to the keypress event hook chain. Whenever a key is pressed,
each of the callbacks within the hook chain are triggered, thereby allowing the malicious code to log every keystroke.

API call is then used to place the name of the mali-
cious DLL into the target process’s address space. Fi-
nally, the CreateRemoteThread API function calls the
LoadLibraryA function to inject the rootkit DLL. Like
event chains, the CreateRemoteThread API call has legit-
imate uses. For example, a debugger might fire off a remote
thread in a target process’s address space for profiling and
state inspection. An anti-malware module might perform
similar behavior. Finally, IO might be handled through
pointers to callbacks exchanged by several processes, where
the callback method is intended to execute in another
process’s address space. The fact that the API call has so
many potentially legitimate uses makes malicious exploits
particularly difficult to detect.

2.2.2 Kernel-Mode Hooking
Rootkits implementing kernel hooks are more difficult to
detect than those implementing user space hooks. In addi-
tion to the extended functionality afforded to the rootkit,
user space anti-malwares cannot detect kernel hooks be-
cause they do not have the requisite permissions to access
kernel memory. Kernel memory resides in the top part of
a process’s address space. For 32-bit Windows, this usually
corresponds to addresses above 0x80000000, but can cor-
respond to addresses above 0xC0000000, if processes are
configured for 3GB rather than 2GB of user space memory
allocation. All kernel memory across all processes maps to
the same physical location, and without special permissions,
processes cannot directly access this memory.

Kernel hooks are most commonly implemented as de-
vice drivers. Popular places to hook into the kernel include
the system service dispatch table (SSDT), the interrupt de-
scriptor table (IDT), and I/O request packet (IRP) function
tables of device drivers.

The SSDT is a Windows kernel memory data structure of
function pointers to system calls. Upon a system call, the op-
erating system indexes into the table by the function call ID
number, left-shifted 2 bits to find the appropriate function in
memory. The system service parameter table (SSPT) stores
the number of bytes that arguments require for each system
call. Since SSPT entries are one byte each, system calls can
take up to 255 arguments. The KeServiceDescriptor
contains pointers to both the SSDT and the SSPT.

When a user space program performs a system call, it
invokes functionality within ntll.dll, which is the main
interface library between user space and kernel space. The
EAX register is filled with the system function call ID and
the EDX register is filled with the memory address of
the arguments. After performing a range check, the value
of EAX is used by the OS to index into the SSDT. The
program counter register IP is then filled with the appro-
priate address from the SSDT, executing the dispatcher call.
Dispatches are triggered by the SYSENTER instruction or the
more dated INT 2E interrupt. SSDT hooks are particularly
dangerous because they can supplement any system call
with their own functionality.

Hoglund and Butler [16] provide an example
of process hiding via SSDT hook, in which the
NTQuerySystemInformation NTOS system call
is hooked to point to shell code, which filters
ZwQuerySystemInformation structures corresponding
to processes by their Unicode string identifiers. Selective
processes can be hidden by changing pointers in this data
structure. Windows provides some protection to prevent
SSDT hooks by making SSDT memory read-only. Although
this protection makes the attacker’s job more difficult, there
are ways around it. One method is to change the memory
descriptor list (MDL) for the requisite area in memory.
This involves casting the KeServiceDescriptorTable
to the appropriate data structure, and using it to build an
MDL from non-paged memory. By locking the memory
pages and changing the flags on the MDL one can change
the permissions on memory pages. Another method of
disabling memory protections is by zeroing the write
protection bit in control register CR0.

The interrupt descriptor table (IDT) is another popular
hook target. The interrupt table contains pointers to call-
backs that occur upon an interrupt. Interrupts can be trig-
gered by both hardware and software. Because interrupts
have no return values, IDT hooks are limited in functionality
to denying interrupt requests. They cannot perform data
filtration. Multiprocessing systems have made IDT hooking
more difficult. Since each CPU has its own IDT, an attacker
must usually hook IDTs of all CPUs to be successful. Hook-
ing only one of multiple IDTs causes an attack to have only
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limited impact.
A final popular kernel hook target discussed by Hoglund

and Butler [16] is the IRP dispatch table of a device driver.
Since many devices access kernel memory directly, Win-
dows abstracts devices as device objects. Device objects may
represent either physical hardware devices such as buses
or they may represent software “devices” such as network
protocol stacks or updates to the Windows kernel. Device
objects may even correspond to anti-virus components that
monitor the kernel. Each device object has at least one device
driver. Communication between kernel and device driver
is performed via the I/O manager. The I/O manager calls
the driver, passing pointers to the device object and the
I/O request. The I/O request is passed in a standardized
data structure called an I/O request packet (IRP). Within
the device object is a pointer to the driver object. Drivers
themselves are nothing more than special types of DLLs.
The I/O manager passes the device object and the IRP to
the driver. How the driver behaves depends on the contents
and flags of the IRP. The function pointers for various IRP
options are stored in a dispatch table within the driver. A
rootkit can subvert the kernel by changing these function
pointers to point to shell code. An anti-virus implemented
as a filter driver, for example, may be subverted by rewriting
its dispatch table. Hoglund and Butler provide an in-depth
example of using driver function table hooking to hide TCP
connections. Essentially any kernel service that uses a device
driver can be subverted by hooking the IRP dispatch table
in a similar manner.

Note that while hooking device driver dispatch tables
sounds relatively simple, the technique requires sophistica-
tion to be implemented correctly. First, implementing bug-
free kernel driver code is an involved task to begin with.
Since drivers share the same memory address space as the
kernel, a small implementation error can corrupt kernel
memory and result in a kernel crash. This is one of the
reasons that Microsoft has gravitated to user-mode drivers
when possible [24]. Second, in many applications drivers
are stacked. When dealing with physical devices, the lowest
level driver on the stack serves the purpose of abstracting
bus-specific behavior to an intermediate interface for the
upper level driver. Even in software, drivers may be stacked,
for example, anti-virus I/O filtering or file system encryp-
tion/decryption can be performed by a filter driver residing
in the mid-level of the stack. A successful rootkit author
must therefore understand how the device stack behaves,
where in the device stack to hook, and how to perform I/O
completion such that the hook does not result in noticeably
different behavior.

2.2.3 Hybrid Hooking
Hybrid hooks aim to circumvent anti-malwares by attack-
ing user space and kernel space simultaneously. They in-
volve implementing a user space hook to kernel memory.
Hoglund and Butler [16] discuss a technique to hook the
user space IAT of a process from the kernel. The motivation
behind this technique is based on the observation that user
space IAT hooks are detectable because one needs to allocate
memory within the process’s context or inject a DLL for
the same effect. By hooking the IAT through the kernel,
there is no need to allocate user space IAT hooks. The

attack in [16] leverages two aspects of the Windows architec-
ture. First, it uses the PsSetLoadImageNotifyRoutine,
a kernel mode support routine that registers driver callback
functions to be called whenever a PE image gets loaded into
memory [25]. The callback is called after loading but before
execution and gets executed within the target process’s
context. By parsing the PE image in memory, an attacker
can change the IAT. The question then becomes, how to
run malicious code without overt memory allocation or DLL
injection into the process’s address space. One solution uses
a specific page of memory [26]: in Windows there exists a
physical memory address shared by both kernel space and
user space, which the kernel can write to, but the user can-
not. The user and kernel mode addresses are 0x7FFE0000
and 0xFFDF0000, respectively. The reason for this virtual↔
physical mapping convention stems from the introduction
of SYSENTER and SYSEXIT instructions in Windows XP,
for fast switches between user mode and kernel mode.
Approximately 1kB of this page is used by the kernel [16],
but the remaining 3kB are blank. Writing malicious code
to addresses in the page starting at 0xFFDF0000 in kernel
space and placing a function pointer to the beginning of
the code at the corresponding address in user space allows
the rootkit to hook the IAT without allocating memory or
performing DLL injection.

Another hybrid attack is discussed in [27]. The attack
is called illusion, and involves both kernel space and user
space components. The motivation behind the attack is to
circumvent intrusion detection systems that rely on system
call analysis (cf. Sec. 3). To understand the illusion attack,
we review steps involved in performing a system call: First,
a user space application issues an INT 3 interrupt or a
SYSENTER instruction, which causes the processor to switch
to kernel mode and execute the dispatcher. The dispatcher
indexes into the SSDT to find the handler for the system
call in question. The handler performs its functionality
and returns to the dispatcher. The dispatcher then passes
return values to the user space application and returns the
processor to user space. These steps should be familiar from
the prior discussion of hooking the SSDT. Illusion works by
creating a one-to-all mapping of potential execution paths
between system calls, which take array buffer arguments
and the function pointers of the SSDT. Although the same
effect could be obtained by making changes directly to the
SSDT, the illusion approach, unlike SSDT hooking, cannot
be detected using the techniques discussed in Sec. 3. Illusion
exploits system calls such as DeviceIoControl, which
is used to exchange data buffers between application and
kernel driver. Parts of the rootkit reside in both in kernel
space and in user space. Messages are passed between user
space rootkit and kernel space rootkit by filling the buffer.
Communication is managed via a dedicated protocol. This
allows the user space rootkit to make system calls on its be-
half without changing the SSDT. Further, metamorphic code
can be leveraged to change the communication protocol at
each execution.

2.3 Type 3 Rootkits: Direct Kernel Object Manipulation

Although second-generation rootkits remain ubiquitous,
they are not without their limitations. Their change of overt
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Fig. 3: DKOM ATTACK. This figure displays a successful DKOM
attack, where the malicious code of Process 2 is hidden from the
system yet continues to execute.

function behavior inherently leaves a detectable footprint.
Third-generation direct kernel object manipulation (DKOM)
attacks take a different approach. DKOM aims to subvert
the integrity of the kernel by targeting dynamic kernel
data structures responsible for bookkeeping operations.
Like kernel space hooks, DKOM attacks are immune to
user space anti-malware, which assumes a trusted kernel.
DKOM attacks are also much harder to detect than kernel
hooks because they target dynamic data structures whose
values change during normal runtime operation. By con-
trast, hooking static areas of the kernel like the SSDT can
be detected with relative ease because these areas should
remain constant during normal operation.

The canonical example of DKOM is process hiding.
The attack can be carried out on most operating systems,
and relies on the fact that schedulers use different data
structures to track processes than the data structures used
for resource bookkeeping operations. In the Windows NTOS
kernel, for example, the kernel layer1 is responsible for
managing thread scheduling, whereas the executive layer,
which contains the memory manager, the object manager,
and the I/O manager is responsible for resource man-
agement [24]. Since the executive layer allocates resources
(e.g., memory) on a per-process basis, it views processes as
EPROCESS (executive process) data structures, maintained
in double circularly linked lists. The scheduler, however, op-
erates on a per-thread instance, and consequently maintains
threads in its own double circularly linked list of KTHREAD
(kernel thread) data structures. By modifying pointers, a
rootkit with control over kernel memory can decouple an
EPROCESS node from the linked list, re-coupling the next
and previous EPROCESS structures’ pointers. Consequently,
the process will no longer be visible to the executive layer
and calls by the Win32 API will, therefore, not display the
process. However, the thread scheduler will continue CPU
quantum allocation to the threads corresponding to the hid-
den EPROCESS node. The process will, thus, be effectively
invisible to both user and kernel mode programs – yet it will
still continue to run. This attack is depicted in Fig. 3.

While process hiding is the canonical DKOM example,
it is just one of several DKOM attack possibilities. Baliga
et al. [28] discuss several known DKOM attack variants,
including zeroing entropy pools for pseudorandom number

1. The kernel itself has three layers, one of which is called the kernel
layer. The other two layers of the kernel are the executive layer and the
hardware abstraction layer.

generator seeds, disabling pseudorandom number genera-
tors, resource waste and intrinsic DOS, adding new binary
formats, disabling firewalls, and spoofing in-memory signa-
ture scans by providing a false view of memory.

Proper DKOM implementations are extremely difficult
to detect. Fortunately, DKOM is not without its shortcom-
ings and difficulties from the rootkit developer’s perspec-
tive. Changing OS kernel data structures is no easy task
and incorrect implementations can easily result in kernel
crashes, thereby causing an overt indication of a malware’s
presence. Also, DKOM introduces no new code to the kernel
apart from the code to modify kernel data structures to
begin with. Therefore, inherent limitations on the scope of
a DKOM attack are imposed by the manner in which the
kernel uses its data structures. For example, one usually
cannot hide disk resident files via DKOM because most
modern operating systems do not have kernel level data
structures corresponding to lists of files.

2.4 Type 4 Rootkits: Cross Platform Rootkits and
Rootkits in Hardware
Fourth-generation rootkit technologies operate at the virtu-
alization layer, in BIOS, and in hardware [29]. At this stage,
fourth-generation rootkits have been developed only in a
proof of concept sense. Because they reside at a lower level
than the operating system, they cannot be detected through
the operating system and are, therefore, OS independent.
However, they still dependent on the type of BIOS ver-
sion, instruction set, and hardware. Since fourth-generation
rootkits are theoretical in nature, at least as of now, we
consider them outside the scope of this paper.

2.5 Code Mutation
In early viruses, the viral code was often appended to the
end of an executable file, with the entry point changed
to jump to the viral code before running the original exe-
cutable. Once executed, the virus code in turn would jump
to the beginning of the body of the executable so that the
executable was run post-replication. The user would be
none the wiser until the host system had been thoroughly
infected. Anti-malware companies soon got wise and started
checking hashes of code blocks – generally at the end of files.
To counter, malware authors began to encrypt the text of the
viruses. This required a decryption routine to be called at
the beginning of execution. The virus was then re-encrypted
with a different key upon each replication.

These encrypted viruses had a fatal flaw: the decryption
routine was jumped to somewhere in the executable. Anti-
malware solutions merely had to look for the decrypter.
Thus, polymorphic engines were created, in which the de-
cryption engine mutated itself at each generation, no longer
matching a fixed signature. However, polymorphic viruses
were still susceptible to detection: First, although the detec-
tor mutated, the size of the malicious code did not change,
was still placed at the end of the file, and was susceptible to
entropy analysis, depending on the encryption technique.

To this end, entry-point obscuring (EPO) viruses were
created, where the body of the viral code is placed arbitrarily
in the executable, sometimes in a distributed fashion. To
counter the threats from polymorphic viruses, Kaspersky
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Old	Generation
pop	edx
mov	edi,	0004h
mov	esi,	ebp
mov	eax,	000Ch
add	edx,	0088h
mov	ebx,	[edx]
mov	[esi+eax*4+00001118],	ebx

New	Generation
pop	eax
mov	ebx,	0004h
mov	edx,	ebp
mov	edi,	000Ch
add	eax,	0088h
mov	esi,	[edx]
mov	[edx+edi*4+00001118],	esi

RegSwap	virus

(a)

New	Generation

Old	Generation

0 1 2 3 4 5 86 7

01 234 5 86 7

(b)

Old	Generation
		.	.	.
inc	eax
mov	ebx,	imm
pop	eax
		.	.	.	

New	Generation
		.	.	.
mov	ebx,	imm
inc	eax
pop	eax
		.	.	.	

(c)

Old	Generation
		.	.	.
inc	eax
mov	ebx,	imm
pop	eax
		.	.	.	

New	Generation
		.	.	.
inc	eax
nop
mov	ebx,	imm
add	eax,	0000h
pop	eax
		.	.	.	

(d)

Old	Generation
		.	.	.
inc	eax
mov	reg,	imm
pop	eax
		.	.	.	

New	Generation
		.	.	.
add	eax,	0001h
push	imm;	pop	reg
pop	eax
		.	.	.	

(e)

Fig. 4: METAMORPHIC CODE OBFUSCATION. Five techniques employed by metamorphic engines to evade signature scans across malware
generations. (a) Register swap: exchanging registers as demonstrated by code fragments from the RegSwap virus [30]. (b) Subroutine
permutation: reordering subroutines of the virus code. (c) Transposition: modifying the execution order of independent instructions. (d)
Semantic NOP-insertion: injecting NOPs or instructions that are semantically identical to NOPs. (e) Code mutation: replacing instructions
with semantically equivalent code.

(of Kaspersky Labs fame) and others [31] created emulation
engines, which effectively run potentially malicious code
in a virtual machine. In order to run, the body of the
viral code must decrypt itself in memory in some form
or another, and when it does, the body of the malicious
code is laid bare for hashed signature comparison as well
as behavioral/heuristic analysis.

To combat emulation, metamorphic engines were devel-
oped. Just as polymorphic malwares mutate their decryp-
tion engines at each generation, metamorphic engines mu-
tate the full body of their code and, unlike polymorphics,
change the size of the code body from one generation to
another. Some malwares still encrypt metamorphic code,
or parts of metamorphic code, while others do not – as
encryption and run time packing techniques can reveal the
existence of malicious code.

Metamorphic code mutation techniques, as shown in
Fig. 4, include register swaps, subroutine permutations,
transpositions of independent instructions, insertion of
NOPs or instruction sequences that behave as NOPs, and
parser-like mutations by context-free grammars (or other
grammar types) [31], [32], [33], [34]. Many metamorphic
techniques are similar to compilation techniques, but for
a much different purpose. The metamorphic engine in the
MetaPHOR worm, for example, disassembles executable
code into its own intermediate representation and uses its

own formal grammar to carry out this mutation [31].

2.6 Anti-Emulation
Mutation engines, including metamorphics and polymor-
phics, change the instructions in the target code itself and
naturally its runtime. However, they do not change the
underlying functionality. Therefore, during emulation, be-
havioral and heuristic techniques can be used to fingerprint
malicious code, for example, if the malware conducts a
strange series of system calls, or if it attempts to establish
a connection with a C2 server at a known malicious address
Hence, malware can be spotted regardless of the degree of
obfuscation present in the code.

Early anti-emulation techniques, including randomized
mutation/decryption, attempt to detect the emulator by
timing or trying to use difficult to emulate functionality
(e.g., invoking the GPU) and exiting the code if an emulator
is detected, waiting out the emulation by burning enough
cycles or sleeping for long enough that the emulator exits
[31], [35]. These techniques are still used today. With the
explosion of virtualization technology thanks largely to the
heavy drive toward “cloud computing” as of late, emula-
tion/sandboxing techniques have become more difficult to
spoof by these conventional means. Moreover, the increased
use of virtualized environments draws into question the
effectiveness of anti-emulation as a stealth technique: if
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malicious code will not run in a virtual environment, then
it might not be an effective attack if the targeted machine is
virtualized.

However, regardless of the advancement of the virtu-
alization technologies themselves, anti-emulation measures
are still widespread and relatively easy to instrument; the
malware simply runs only when a human is detected inter-
acting with the file in question. For example, the UpClicker
malware establishes malicious connections only when the
left mouse button is released. Other malwares take ad-
vantage of dialog boxes and scrolling. More sophisticated
detection techniques analyze mouse movements and can
differentiate between human and simulated mouse move-
ments by assessing speed, curvature, and other features.
Yet other techniques attempt to fingerprint the virtualized
environment by looking for blacklisted properties, for ex-
ample, volume identifiers for actual machines are relatively
random compared to those of pre-configured VMs used in
sandbox emulators. Malwares whose progression requires
C2 servers connection can additionally check the network
interface. Many sandboxes operate in a standalone mode so
the malware will not proceed to do anything malicious if a
connection cannot be made [36].

2.7 Targeted Attacks

Stealth malwares often reveal themselves by over-virulence,
spreading to machines unrelated to their intended targets.
Targeted malwares aim to limit their spread, executing only
under certain conditions. These conditions may include
a specified time range, specified locations and IP-address
ranges, particular machine identifiers (e.g., hard disk serial
numbers, MAC addresses, host names, etc.), and instruction
based communication from a C2 server [35], [37].

3 COMPONENT-BASED STEALTH MALWARE
COUNTERMEASURES

In this section, we discuss anti-stealth malware techniques
that aim to protect the integrity of areas of systems, which
are known to be vulnerable to attacks. These techniques
include include hook detection, cross-view detection, invari-
ant specification, and hardware and virtualization solutions.

When assessing the effectiveness of any malware recog-
nition system it is important to consider the system’s respec-
tive precision/recall tradeoff. Recall refers to the proportion
of relevant samples that are retrieved, while precision refers
to the proportion of retrieved samples that are relevant. In-
creased recall tends to decrease precision, whereas increased
precision tends to decrease recall. The “optimal” tradeoff
between precision and recall for a given system depends
on the application at hand. The integrity based solutions
discussed in this section tend to offer higher precision rates
than the pattern recognition techniques discussed in Sec. 4,
but they are difficult to update because custom changes to
hardware and software are required, making scalability an
issue.

It is important to realize that the component protection
techniques presented in this section are in practice often
combined with more generic pattern recognition techniques

discussed in Sec. 4, for example, hardware and virtualiza-
tion solutions might be used to achieve a clean view of
memory, on which a signature scan can be run.

3.1 Detecting Hooks

If stealth malwares use in-memory hooks, one can detect
a malware by detecting its hooks. Unfortunately, methods
that simply detect hooks trigger high false alarm rates since
hooks are not inherently malicious. This makes weeding out
false positives a challenging task. Also, many hook detection
techniques still assume intact kernel data structures and are
therefore susceptible to DKOM.

Ironically, an effective approach to detect hooks is to
hook common attack points. By doing so, an anti-malware
may not only be able to detect a rootkit loading into
memory, but may also be able to preempt the attack. This
might be accomplished by hooking the API functions used
to inject DLLs into a target process’s context (cf. Sec. 2.2.1)
[16]. However, one must know what functions to hook
and where to look for malicious attacks. Pinpointing attack
vectors is not easy. For example, symbolic links are often
not resolved to a common name until system call hooks
have been executed. Therefore, if the anti-malware relies on
hooking the SSDT alone and matching the name of the target
in the hook routine, an attacker can simply use an alias.
Once hooks are observed, some tradeoff between precision
and recall must be made: One can easily catch all rootkits
loading into memory, and in doing so, create a completely
unusable system (i.e., very high recall rates but extremely
low precision rates).

Hook detection can be combined with signature and
heuristic scans (discussed in Sec. 4) for ingress point moni-
toring. Based on a signature of the hooked code, the ingress
point monitoring system can determine whether or not to
raise an alarm. In contrast to trying to detect rootkit hooks
as a rootkit loads, VICE [16], [38] uses memory scanning
techniques that periodically inspect likely target locations of
hooks such as the IAT, SSDT, or IDT. VICE detects hooks
based on the presence of unconditional jumps to memory
values outside of acceptable address ranges. Acceptable
ranges can be defined by IAT module ranges, driver address
ranges, and kernel process address ranges. For example,
a system call in the SSDT should not point to an address
outside ntoskrnl.exe.

Generic inline hooks cannot feasibly be detected via this
method. Fortunately, as we discussed in Sec. 2.2, hooks
beyond the first few bytes of a function are rare, since they
can result in strange behaviors, including noticeable slow
down and outright program failure. For SSDT functions,
unconditional jumps within the first few bytes outside of
ntoskrnl.exe are indicators of hooks. IAT range checks
require context switching into the process in question, enu-
merating the address ranges of the loaded DLLs, checking
whether the function pointers in the IAT fall outside of their
corresponding ranges, and recursively repeating this for all
loaded DLLs.

A similar approach to VICE was taken in the implemen-
tation of System Virginity Verifier [39], which attempts to
separate malicious hooking from benign hooking by com-
paring the in-memory code sections of drivers and DLLs
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to their disk images. Since these sections are supposed to
be read-only, they should match in most cases, with the
exception of a few lines of self-modifying kernel code in
the NTOS kernel and hardware abstraction layers. Malicious
hooks distinguish themselves from benign hooks when they
exhibit discrepancies between in-memory and on-disk PE
images, which will not occur under benign hooking. Ad-
ditionally, if the disk image is hidden then the hook likely
corresponds to a rootkit. One must be careful in this case
to distinguish missing files, which can occur in legitimate
hooking applications, from hidden files. Other examples
of image discrepancies associated with malicious hooks
include failure of module attribution and code obfuscation.

An indirect approach to detecting hooks was imple-
mented in Patchfinder 2 [40], in the form of API call tracing.
This approach counts the number of instructions executed
during an API call and compares the count to the number
of instructions executed in a clean state. The intuition is
based on the observation that in the context of rootkits,
hooks almost always add instructions. The technique re-
quires proper baselining, which presents two challenges:
First, deducing that the system is in a non-hooked state
to begin with is difficult to establish, unless the system is
fresh out of box. Second, the Win32 API has many functions,
which take many different arguments. Since enumerating
all argument combination possibilities while acquiring the
baseline is infeasible, API calls can vary substantially in
instruction count even when unhooked.

3.2 Cross-View Detection and Specification Based
Methods

Cross-view detection is a technique aimed to reveal the pres-
ence of rootkits. The idea behind cross-view detection [41]
is to observe the same aspect of a system in multiple ways,
analogous to interviewing witnesses at a crime scene: Just
as conflicting stories from multiple witnesses likely indicate
the presence of a liar, if different observations of a system
return different results, the presence of a rootkit is likely.
First, OS objects – processes, files, etc. – are enumerated via
system API calls. This count is compared to that obtained
using a different approach not reliant on the system API.
For example, when traversing the file system, if the results
returned by FindFirstFile and FindNextFile are in-
consistent with direct queries to the disk controller, then a
rootkit is likely present.

One of the advantages of cross-view detection is that –
if implemented correctly – maliciously hooked API calls can
be detected with very few false positives because legitimate
applications of API hooking rarely change the outputs of
the API calls. Depending on the implementation, cross-view
detection may or may not assume an intact kernel, and
therefore may even be applied to detect DKOM. The main
disadvantage of cross-view detection is that it is difficult
to implement, especially for a commercial OS. API calls are
provided for a reason: to simplify the interface to kernel and
hardware resources. Cross-view detection must circumvent
the API, in many cases providing its own implementation.
Theoretically, in most cases combinations of other API calls
could be used in place of a from-scratch implementation.
However, API call combinations are susceptible to the risk

of other hooked API calls or duplicate calls to the same
underlying code for multiple API functions, a common
feature of the Win32 API [24].

Several cross-view detection tools have been developed
over the years. Rootkitrevealer [42] by Windows SysInternals
applies a cross-view detection strategy for the purposes of
detecting persistent rootkits, i.e., disk-resident rootkits that
survive across reboots. Rootkitrevealer uses the Windows
API to scan the file system and registry, and compares
the results to a manual parsing of the file system volume
and registry hive. Klister [40] detects hidden processes in
Windows 2000 by finding contradictions between executive
process entries and kernel process entries used by the sched-
uler. Blacklight [43] combines both hidden file detection and
hidden process detection. Microsoft’s Strider Ghostbuster
[44] is similar to Rootkitrevealer, except that it also detects
hidden processes and it has the ability to compare an “inside
the box” infected scan with an “outside the box” scan, in
which the operating system is booted from a clean version.

If properly applied, cross-view detection offers high
precision rootkit detection. However, cross-view detection
alone provides little insight on the type of the rootkit and
must be combined with recognition methods (e.g., signa-
ture/behavioral) to attain this information. Cross-view de-
tection methods are also cumbersome to update because
they require new code, often interfacing with the kernel.
Determining, which areas to cross-view, is also a challenging
task.

3.3 Invariant Specification

A related approach to cross-view detection, especially ap-
plied to detecting DKOM, involves pinpointing kernel in-
variants – aspects of the kernel which should not change
under normal OS behavior – and periodically monitoring
these invariants. One example of a kernel invariant is that
the length of the executive and kernel process linked lists
should be equal, which is violated in the case of process
hiding (cf. Fig. 3). Petroni et al. [45] introduce a framework
for writing security specifications for dynamic kernel data
structures. Their framework consists of five components: a
low-level monitor used to access kernel memory, a model
builder to synthesize the raw kernel memory binary into
objects defined by the specification, a constraint verifier that
checks the objects constructed by the model builder against
the security specifications, response mechanisms that define
the actions to take upon violation of a constraint, and finally,
a specification compiler, which compiles specification con-
straints written in a high-level language into a form readily
understood by the model builder.

Compelling arguments can be found in favor of the
kernel-invariant based security specification approaches de-
scribed above: First, they allow a decoupling of site-specific
constraints from system-specific constraints. An organiza-
tion may have a security policy that forbids behavior not
in direct violation of proper kernel function (e.g., no shell
processes running with root UUID in Linux). Via a layered
framework, specifications can be added without chang-
ing low-level implementations. Unlike signature-based ap-
proaches relying on rootkits having overlapping code frag-
ments with other malwares, kernel-invariant specifications
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catch all DKOM attacks that violate particular specification
constraints with only few false positives. The specification
approach can even be extended beyond DKOM. However,
using kernel invariant specification is not without its own
difficulties. Proper and correct framework implementation
is a tremendous programming effort in itself. For closed-
source operating systems like Windows, full information
about kernel data structures and their implementation is
seldom available, unless the specification framework tool
is being developed as part of or in cooperation with the
operating system vendor. Specification approaches can also
exhibit false positives, for example, if kernel memory is
accessed asynchronously via an external PCI interface like
Copilot [12], a legitimate kernel update to a data structure
may trigger a false positive detection simply because the
update has not completed. Finally, the degree to which
the invariant-specification approach works depends on the
quality of the specification. Correct specifications require in-
depth domain specific knowledge about the kernel and/or
about the organization’s security policy. Due to the mas-
sive sizes and heterogeneities of operating systems, even
those of similar distribution, discerning a complete list of
specifications is implausible without incorrect specifications
that result in false positives. Invariant specification is a spe-
cific solution tailored to DKOM rootkits and is not readily
generalized to other types of stealth malwares. Although it
provides more readily available diagnostic information than
cross-view detection, because it tells which invariants are
violated, invariant specification cannot discern the type of
DKOM rootkit. Hence, more generic signature/behavioral
techniques are required.

3.4 Hardware and Virtualization Solutions

The key motivation behind hardware based integrity check-
ing is quite simple: A well-designed rootkit that has suc-
cessfully subverted the OS kernel, or theoretically even the
virtual layer and BIOS of a host machine, can return a
spurious view of memory to a host based intrusion detection
system (HIDS) such that the HIDS has no way of detecting
the attack because its correct operation requires an intact
kernel. Rather than relying on the kernel to provide a cor-
rect view of kernel memory, hardware solutions have been
developed. For example, Copilot [12] uses direct memory
access (DMA) via the PCI bus to access kernel memory from
the hardware of the host machine itself and display that
view of memory to another machine. This in turn subverts
any rootkit’s ability to change the view of memory, barring
a rootkit implemented in hardware itself. Depending on the
hardware integrity checker in question, further analysis of
kernel memory on the host machine may be performed via
a supervisory machine alone, or alternatively with the aid of
additional hardware. Copilot uses a coprocessor to perform
fast hashes over static kernel memory and reports violations
to a supervisory machine. Analysis mechanisms similar to
those in [27], [46] are employed on the supervisory machine
in conjunction with DMA in order to properly parse kernel
memory.

Using DMA to observe the memory layout of the host
system from a supervisory system is appealing since a
correct view of host memory is practically guaranteed.

However, like all of the techniques that we have discussed,
hardware based integrity checking is no silver bullet. In
addition to the added expense and annoyance of requir-
ing a supervisory machine, DMA based rootkit detection
techniques are only detection techniques since they cannot
intervene in the hosts execution. They have no access to the
CPU and, therefore, cannot prevent or respond to attacks
directly. This CPU access limitation not only means that
CPU registers are invisible to DMA, it also means that the
contents of the CPU cache cannot be inspected, leaving the
theoretical possibility of a rootkit hiding malicious code
in the cache. However, a more pressing concern is that
because DMA approaches operate at a lower level than the
kernel they do not have a clear view of dynamic kernel
data structures, which requires that these structures need
to be located in memory, a problem discussed in [47]. Even
after locating the kernel data structures, there remains a
synchronization issue between DMA operations and the
host kernel: DMA cannot be used to acquire kernel locks on
data structures. Consequently, race conditions result when
the kernel is updating a data structure contemporaneous
with a DMA read. False positives were observed by Baliga
et al. [28] for precisely this reason. An inelegant solution [12]
is to simply reread memory locations containing suspicious
values. Another consideration when implementing DMA
approaches is the timing of DMA scans. Both [12] and [28]
employed synchronous DMA scans, which are theoretically
susceptible to timing attacks. Petroni et al. [12] suggested
to introduce randomness to the scan interval timings to
overcome this susceptibility.

Virtualization, though technologically quite different
from DMA, aims to satisfy the same goal of inspecting re-
sources of the host machine without relying on the integrity
of the operating system. Several techniques for rootkit de-
tection, mitigation, and profiling that leverage virtualization
have been developed, including [27], [39], [48], [49], [50]. The
idea behind virtualization approaches is to involve a virtual
machine monitor, aka. the hypervisor, in the inspection of
system resources. Since the hypervisor resides at a higher
level of privilege than the guest OS, either on the hardware
itself or simulated in software, and the hypervisor controls
the guest OS’s access to hardware resources, the hypervisor
can be used to inspect these resources even if the guest OS is
entirely compromised. Unlike Copilot’s approach, in which
kernel writes and DMA reads are unsynchronized, the hy-
pervisor and the guest OS kernel are synchronous since the
guest OS relies on the hypervisor for resources. Moreover,
the hypervisor has access to state information in the CPU,
meaning that it can interpose state, a valuable ability not
only for rootkit detection, prevention and mitigation, but
also for computer forensics. Additionally, the hypervisor
can be used to enforce site specific hardware policies, for
example the hypervisor can prevent promiscuous mode
network interface operation [48]. Hypervisors themselves
may be vulnerable to attack, but the threat surface is much
smaller than for an operating system: Hypervisors have
been written in as little as 30,000 lines of C code as opposed
to the tens of millions of lines of code in modern Windows
and Linux distributions. Significant security validations on
hypervisors have also been conducted by academia, private
security firms, the open source community, and intelligence
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organizations [48].
Garfinkel and Rosenblum [48] created Livewire, a proof

of concept intrusion detection system residing at the hy-
pervisor layer. The authors refer to their approach as vir-
tual machine introspection since the design utilizes an OS
interface to translate raw hardware state into guest OS
semantics and inspect guest OS objects via a policy engine,
which interfaces with the view presented by the translation
engine. The policy engine effectively is the intrusion detec-
tion system, which performs introspection on the virtual
machine. The policy engine can monitor the machine and
can also take mitigation steps such as pausing the state of
the VM upon certain events or denying access to hardware
resources.

A particular advantage of virtualization is that it can
be leveraged to prevent rootkits from executing code in
kernel memory – a task that all kernel rootkits must perform
to load themselves into memory in the first place. This
includes DKOM rootkits: Although the changes to kernel
objects themselves cannot be detected as code changes to
the kernel, code must be introduced at some point to make
these changes. To this end, Seshadri et al. [49] formulated
SecVisor. In contrast to the software centric approach of
Livewire, SecVisor leverages hardware support for virtu-
alization of the x86 instruction set architecture as well as
AMD’s secure virtual machine (SVM) technologies. SecVisor
intercepts code via modifications to the CPU’s memory
management unit (MMU) and the I/O memory manage-
ment unit (IOMMU), so that only code conforming to a user
supplied policy will be executable. As such, kernel code
violating the policy will not run on the hardware. In fact,
SecVisor’s modification to the IOMMU even protects the
kernel from malicious writes via a DMA device. SecVisor
works by allowing transfer of control to kernel mode only
at entry points designated in kernel data structures, then
performing comparisons to shadow copies of entry point
pointers. This approach is analogous to that used in memory
integrity checking modules of heavyweight dynamic binary
instrumentation (DBI) frameworks like Valgrind [51].

Unfortunately, SecVisor has several drawbacks. First,
modern Linux and Windows distributions mix code and data
pages [50], while SecVisor’s approach – enforcing write XOR
execute (W ⊕X) permissions for kernel code pages through
hardware virtualization – assumes that kernel code and data
are not mixed within memory pages. The approach also fails
for pages that contain self-modifying kernel code. Second,
SecVisor requires modifications to the kernel itself – a dif-
ficult proposition for adoption on closed-source operating
systems like Windows.

Riley et al. [50] formulated NICKLE (No Instruction
Creeping into Kernel Level Executed), which, like SecVisor,
leverages virtualization to prevent execution of malicious
code in kernel memory. NICKLE approaches the problem
via software virtualization and overcomes some of the lim-
itations of SecVisor. NICKLE works by shadowing every
byte of kernel code in a separate shadow memory writable
only by the hypervisor. Because the hypervisor resides in
a higher privilege domain than the kernel, even the kernel
cannot modify the shadowed code. The shadowed code gets
authenticated either during bootstrapping, when the kernel
is loaded into memory, or when drivers are mounted or

unmounted. Authentication consists of cryptographic hash
comparisons of code segments with known good values
taken by OS vendors or distribution maintainers. When the
operating system requires access to kernel-level code an in-
direction mechanism in the hypervisor reroutes this request
to shadow values. To maintain transparency to the guest
OS, this guest memory address indirection implemented
after the “virtual to physical” address translation in the
hypervisors MMU. When the guest VM attempts to execute
kernel code, a comparison is made to shadow memory. If
the code is the same, then the shadow memory copy is
executed. If the kernel memory and shadow memory code
differ then one of several responses can be taken including
logging and observing, an approach extended by Riley et al.
[52] for rootkit profiling, rewriting the malicious kernel code
with shadow values and continuing execution, or breaking
execution. NICKLE’s approach has two key advantages over
SecVisor: First, it does not assume homogeneous code and
data pages. Second, it does not require any modifications to
kernel code. These benefits, however, incur hits in speed due
to software virtualization and memory indirection costs and
require a two-fold increase in memory for kernel code. An
additional complication arises from code relocation: When
driver code is relocated in kernel memory, cryptographic
hashes change. Riley et al. handle this problem by tracking
and ignoring relocated segments. Also, the NICKLE imple-
mentation in [50] does not support kernel page swapping,
which would need to ensure that swapped in pages had the
same cryptographic hash as when they were swapped out.
Finally, NICKLE is ineffective in protecting self-modifying
kernel code, a phenomenon present in both Linux and Win-
dows kernels.

Srivastava et al. [27] leverage virtualization in their
implementation of Sherlock – a defense system against
the aforementioned illusion attack. Sherlock uses the Xen
hypervisor to monitor system call execution paths. Specifi-
cally, the guest OS is assumed to run on a virtual machine
controlled by the Xen hypervisor. Monitoring of memory is
conducted by the hypervisor itself with the aid of a separate
security VM for system call reconstruction, analysis, and no-
tification of other intrusion detections systems. Watchpoints
are manually and strategically placed in kernel memory
off-line, and a Büchi automaton [27]is constructed, which
efficiently describes the expected and unexpected behavior
of every system call in terms of watch points. Each watch
point contains the VMCALL instruction, so that when it is hit,
it notifies the hypervisor. Watch point identifiers are passed
to the automaton as they are executed.

During normal execution, the automaton remains in
benign states and watch points are discarded. When a mali-
cious state is reached, the hypervisor logs watch points and
suspends the state of the guest VM. The function specific
parameters at each watch point corresponding to a mali-
cious state are then passed to the security VM for further
analysis. An important consideration of this implementation
is where to place watchpoints to balance effectiveness and
efficiency. Srivastava et al. [27] manually chose watch point
locations based on a reachability analysis of a kernel control
flow graph, but suggest that an autonomous approach [53]
could be implemented.
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4 PATTERN-BASED STEALTH MALWARE COUN-
TERMEASURES

Pattern-based approaches aim to achieve more generic
recognition of heterogeneous malwares. While these ap-
proaches offer potential for efficient updates and scalability
beyond most component protection techniques, their in-
creased generalization causes them to tend to exhibit higher
recall rates but lower precision rates. When applied, pattern
recognition approaches are often coupled with component
protection approaches, for example, obfuscated code recog-
nition techniques discussed in Sec. 4.3 often rely on an
emulated environment for decryption.

4.1 Signature Analysis
Code-signature-based malware defenses are techniques that
compare malware signatures – fragments of code or hashes
of fragments of code – to databases of signatures associated
with known attacks. Although signatures cannot be directly
used to discover new exploits [54], they can do so indirectly
due to component overlap between malwares [55], [56].
Ironically, shared stealth components have sometimes given
away the presence of malwares that would have otherwise
gone unnoticed [35]. Moreover, some byte sequences of
length n (n-grams) specific to a common type of exploit are
often present even under metamorphism of the code. Ma-
chine learning approaches to malware classification via n-
gram and sequence analysis have been widely studied and
deployed as integral components of anti-malware systems
for more than ten years [35], [46].

While most in-memory rootkit signature recognition
strategies behave much like on-disk signature strategies
for detecting and classifying malicious code by matching
raw bytes against samples from known malware, DKOM
rootkit detection requires a different approach. Since DKOM
involves changing existing data fields within OS data struc-
tures to hide them from view of certain parts of the
OS, DKOM signature scanning techniques instead perform
memory scans using signatures designed to pinpoint hidden
data structures in kernel memory. Surprisingly, memory
signature scans are useful both in live and forensics contexts.
Chow et al. [57] demonstrated that structure data in kernel
memory can survive up to 14 days after de-allocation, pro-
vided that the machine has not been rebooted. Schuster [58]
formulated a series of signature rules for detecting processes
and threads in memory, for the general purpose of computer
forensics. Several spinoffs of this approach have been imple-
mented. Unfortunately, many of these signature approaches
can be subverted by rootkits that change structure header
information. Dolan-Gavitt et al. [47] employed an approach
to automatically obtain signatures for kernel data structures
based on values in the structures that, if modified, cause the
OS to crash. The approach includes data structure profiling
and fuzzing stages. In the profiling stage, a clean version
of the operating system is run, while a variety of tasks are
performed. Kernel data structure fields commonly accessed
by the OS are logged. The goal of the profiling stage is
to determine fields that the OS often accesses and weed
out fields that are not widely used for consideration as
signatures. The fuzzing stage consists of running the OS on
a virtual machine, pausing execution, and modifying the

values in the candidate structure. After resuming, candidate
structure values are added to the signature list if they cause
the kernel to crash. The approach in [47] is in many ways
the complement of the kernel invariant approach in [28].
Instead of traversing kernel data structures and examining
which invariants are violated, Dolan-Gavitt et al. scan all
of kernel memory for plausible data structures. If certain
byte offsets within the detected structures do not contain
signatures consistent with certain values, then the detections
cannot correspond to actual data structures used by the
kernel because otherwise they would crash the operating
system. A limitation of the approach in [47] is that it is
susceptible to attack by scattering copies or near copies of
data structures throughout kernel memory.

4.2 Behavioral/Heuristic Analysis
On the host level, signatures are not the only heuristic used
for intrusion detection. System call sequences for intrusion
and anomaly detection [59], [60], [61], [62], [63], [64], [65] are
an especially popular alternative for rootkit analysis since
hooked IAT or SSDT entries often make repetitive patterns
of system calls. Interestingly, rootkits can also be detected
by network intrusion detection systems (NIDSs), because
rootkits in the wild are almost always small components
of a larger malware. The larger malware often performs
some sort of network activity such as C2 server commu-
nication and synchronization across infected machines, or
infection propagation. This is even true for some of the
most sophisticated stealth malwares that leverage rootkit
technologies to hide network connections from the host [37],
while a rootkit cannot hide connections from a network.
Therefore, signature scans at the network level as well as
traffic flow analysis techniques can give away the presence
of the larger malware as well as the underlying rootkit.
NIDSs also have the advantage that they provide isolation
between the malware and the intrusion detection system,
reducing a malware’s capacity to spoof or compromise the
IDS. However, NIDSs have no way of inspecting the state of
a host or interposing a host’s execution at the network level.
A hybrid approach, which extends the concept of cross-
view detection is to compare network connections from a
host query with those detected at the network level [66]. A
discrepancy indicates the presence of a rootkit.

4.3 Feature Space Models vs. State Space Models
As discussed above, code signatures and application behav-
iors/heuristics can be used in a variety of ways to detect
and classify intrusions, and they operate across many levels
of the intrusion detection hierarchy. For example, encrypted
viruses are particularly robust against code signatures –
until they are decrypted – but during emulation, once the
virus is in memory, it might be particularly susceptible to
signature analysis. This analysis may range from a sim-
ple frequency count of OPCODES to more sophisticated
machine-learning techniques.

Machine learning models can be divided into feature
space models and state space models. Examples of both are
shown in Fig. 5, in which code fragments are classified as
malicious or benign based on their OPCODE n-grams. Fea-
ture space models aim to treat signature/behavioral features
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(a) Binary OPCODE n-gram histogram classification

State transition matrix

State S1 S2 S3 . . .

S1 0.6 0.3 0.1 . . .
S2 0 0.7 0.2 . . .
S3 0 0 0.5 . . .

. . . . . . . . . . . .

Observation probabilities

OPCODE S1 S2 S3 . . .

mov ebx, imm 0.6 0.1 0.01 . . .
mov esi, epb 0.07 0.5 0.06 . . .

add edx, 0088h 0 0.04 0.81 . . .
. . . . . . . . . . . .

(b) OPCODE sequence analysis

Fig. 5: FEATURE SPACE VS. STATE SPACE OPCODE CLASSIFICATION. This diagram depicts (a) a schematic interpretation of a linear
classifier that separates benign and malicious OPCODE n-grams in feature space and (b) a sequential OPCODE analysis using a hidden
Markov model. The feature space model must explicitly treat histograms of n-grams as independent dimensions for varying values of n in
order to capture sequential relationships. This approach is only scalable to a few sequence lengths. HMMs, on the other hand impose a Markov
assumption on a sequence of hidden variables which emit observations. State transition and observation probability matrices are inferred via
expectation maximization on training sequences. An HMM factor graph is shown on the bottom left.

as a spatial dimension and parametrize a manifold within
this high-dimensional feature space for each class. Feature
space models can be further broken down into generative
models and discriminative models. Generative models aim
to model the joint distribution P (x, y) of target variable y
and spatial dimension x, and perform classification via the
product rule of probability: P (y|x) = P (x,y)

P (x) . Discriminative
classifiers aim to model P (y|x) directly [67]. By treating
the frequencies of distinct n-gram hashes as elements of
a high-dimensional feature vector, for example, the input
feature space becomes the domain of these vectors. Support
vector machines (SVMs), which are discriminative feature
space classifiers, aim to separate classes by fracturing the
input feature space or some transformation thereof by a hy-
perplane that maximizes soft class margins. An advantage
of feature space models is that in high dimensions, even if
only a few of the dimensions are relevant, different classes
of data tend to separate. However, feature space models
do not explicitly account for probabilistic dependencies,
and a good feature space from a classification accuracy
perspective is not necessarily intuitive.

State space models are used to infer probabilities about
sequences. They leverage the fact that certain sequences of
instructions exist within malicious binary due to functional
overlap as well as general lack of creativity and laziness of
malware authors. State space models can also be applied
to functional sequences (e.g., sequences of system calls or
network communications). The intuition is that we can use
certain types of functional behaviors to describe classes
of malware in terms of what they do, for example, ran-

somwares like CryptoLocker typically generate a key that
they use to encrypt files on disk and subsequently attempt
to send that key to a C2 server. After a certain amount of
time, they remove the local copy of the key and generate
a ransom screen demanding money for the key [68]. State
space models for intrusion recognition aim to recognize
these sorts of malicious sequences.

The most common type of state space models are based
in some form on the Markov assumption – that recent events
will be independent of events that happened in the far
past. While the Markov assumption is not always valid, it
makes sequential inference tractable and is often reasonable.
For example, if the last fifty assembly instructions were
devoted to adding elements from two arrays together and
incrementing respective pointers, with no other knowledge,
it is a reasonable assumption that the next few instructions
will add array elements. Knowing that “hello world” was
printed to the screen a million instructions ago provides
little information about the probability of the next instruc-
tion. Hidden Markov models (HMMs) are perhaps the most
widely used type of Markov models and have been par-
ticularly useful in code analysis including recognition of
metamorphic viruses. HMMs assume that latent variables,
which take on states, are linked in a Markov chain with
conditional dependencies on the previous states. The order
of the HMM corresponds to the number of previous states
on which the current state depends, for example, in an n-th
order HMM the current state depends only on the previous
n states.

In HMMs, previous states are fused with current states
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via a transition probability matrix A governing the Markov
chain, and an observation probability matrix B – the prob-
ability of observing the data in a given state – as well as
an initial state vector π. A, B, and π can be estimated
via expectation maximization (EM) inference on observa-
tion sequences O, which aims to find the maximum like-
lihood estimate (MLE) of a sequence of observations, i.e.,
arg maxλ P (O|λ), where λ = (A,B, π). Although EM is
guaranteed to converge to a local likelihood maximum,
it is not guaranteed to converge to the global optimum.
In the context of HMMs, this inference is usually carried
out via the Baum-Welch algorithm [67] (aka. the Forward-
Backward algorithm), which iterates between forward and
backward passes and an update step until the likelihood of
the observed sequence O is maximized with respect to the
model.

The usage of HMMs for metamorphic virus detec-
tion has been documented in [32], [69], [70], [71], [72],
[73], [74], [75], [76].2 These works assume a predom-
inantly decrypted virus body, i.e., little to no encryp-
tion/compression within the body to begin with, or that
a previously encrypted/compressed metamorphic has been
decrypted/decompressed inside an emulator. The number
of hidden states and therewith the state transition matrix is
generally chosen to be small (2-3), while observation matrix
is larger, with rows consisting of conditional probabilities of
OPCODES for given states. For metamorphic detection, the
semantic meaning of the states themselves is unclear as is the
optimal number of hidden states – they reflect some latent
structure within the code, but their semantic representation
is unclear. This contrasts with other applications of HMMs,
for example, in handwriting sequence recognition, the latent
structure behind a noisy scrawl of an “X” is the letter “X”
itself; thus with proper training data there should be 26
latent variables (for the English alphabet) with transition
probabilities corresponding to what one might expect from
an English dictionary, e.g., a “T” → “H” transition is much
more likely than a “T”→ “X” transition.

A common metamorphic virus recognition measure is
the thresholded negative log-likelihood probability per OP-
CODE [32], [71], [74] obtained from a forward pass on an
HMM, i.e.:

− log(p(O1, .., ON , z1, .., zN ))

N
,

where O1, . . . , ON are OPCODEs in an N -length program
and z1, . . . , zN are the hidden variables. The per-opcode
normalization is required because different programs have
different lengths. Most of the HMMs used in these works
are first-order HMMs, in which the state space probability
distribution of hidden variable zn is conditioned only on the
value of zn−1 and the current observation. For a k−th order
HMM, the probability of zn is conditioned on zn−1 . . . zn−k.
However, the time complexity of HMMs increases exponen-
tially with their order. Although in their works [32], [69],
[70], [71], [72], [73], [74], [75], [76] the authors claim that
the number of hidden variables did not seem to make a
difference, they might if higher-order Markov chains were
used. As Lin and Stamp [72] discuss, one problem with

2. HMMs are used for many sequential learning problems and have
several different notations. Here, we borrow notation from [32]

HMMs is that it ultimately measures similarity between
code sequences; if the inter-class to intra-class sequential
variation is large enough due to some exogenous factor
such as very similar non-viral code in train/test, then HMM
readout may be error-prone.

5 TOWARD ADAPTIVE MODELS FOR STEALTH
MALWARE RECOGNITION

A large portion of the malware detected by both component
protection and generic recognition techniques is previously
observed malware with known signatures, deployed by
script kiddies – attackers with little technical expertise that
predominantly use pre-written scripts to propagate existing
attacks [77]. Systems with up-to-date security profiles are
not vulnerable to such attacks.

Sophisticated stealth malwares, on the other hand, have
propagated undetected for long periods of time because
they do not match known signatures, do not target protected
system components with previously seen patterns, and
mask harmful behaviors as benign. To reduce the amount of
time that these previously unseen stealth malwares spend
propagating in the wild, component protection and generic
recognition techniques alike must be able to quickly recog-
nize and adapt to new types of attacks. Typically, it is slower
to adapt component techniques than it is to adapt generic
recognition techniques because new hardware and software
are required. However, even more generic algorithmic tech-
niques may take time to update and this must be factored
into the design of an intrusion recognition system.

The choice of the algorithm for efficient updates is only
one of several considerations that must be addressed in
an intrusion recognition system. More elementary is how
to autonomously make a decision that additional training
data is needed and that the classifier needs to be updated
in the first place. In short, an intrusion recognition system
must be adaptive in order to efficiently mitigate the threat
of stealth malware. It must also be interpretable to yield
actionable information to human operators and incident
response modules. Unfortunately, many systems proposed
in the literature are neither adaptive nor interpretable. We
have isolated six flawed modeling assumptions, which we
believe must be addressed at the algorithmic level. We
discuss these flawed assumptions in Sec. 5.1, and propose
an algorithmic framework for attenuating them Sec. 5.3.

5.1 Six Flawed Assumptions
5.1.1 Intrusions are Closed Set.
Real intrusion recognition tasks have unseen classes at clas-
sification time. Neither all variations of malicious code nor
all variations of benign behaviors can be known apriori.
However, the majority of the intrusion recognition tech-
niques cited in this paper implicitly assume that all classes
seen at classification time are also present in the training set,
evaluating recognition accuracy only for a fixed closed set of
classes.

Consequently, good performance on IDS benchmarks
does not necessarily translate into an effective classifier in a
real application. In real, open set scenarios, where a classifier
is trained on M classes of interest, at classification time it is
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(a) (b) (c)

Fig. 6: PROBLEMS WITH THE CLOSED WORLD ASSUMPTION. (a) Red, green, and blue points correspond to a training set of different
classes of malicious or benign samples in feature space. The intersecting lines depict a decision boundary learnt from training a linear classifier
on this data. (b) The classifier categorizes points from a novel class (gray) as a training class (blue) with high confidence since the gray samples
lie far on the blue side of the decision boundary and the classifier labels span infinitely in feature space. (c) An idealized open world classifier
bounds the amount of space ascribed to each class’s label by the support of the training data, labeling unlabeled (white) space as “unknown”.
With human/machine supplied labels, novel classes (gray) can be added to the classifier without retraining on the vast majority of data.

confronted with instances of classes that are sampled from
a distribution of nearly infinitely-many categories. Conven-
tional classifiers are designed to separate classes from one
another by dividing a hypothesis space into regions and
assigning labels respectively. Effective classifiers roughly
seek to approximate the Bayesian optimal classifier on the
posterior probability P (yi|x; C1, C2, . . . , CM ), i ∈ {1 . . .M},
where x is a feature vector, yi is a class label, and Ci is
a particular known class. However, in the presence of Ω
unknown classes Un the optimal posterior model would
become P (yi|x; C1, C2, . . . , CM , U1, . . . , UΩ). Unfortunately,
our ability to model this posterior distribution is limited
because U1, . . . , UΩ are unknown. Mining negatives during
training may help to define known but uninteresting classes
(e.g., CM+1), but it is impossible to span all negative space,
and the costs of negative training become infeasible with
increasing numbers of feature dimensions. Consequently,
a classifier may label space belonging to Ci far beyond
the support of the training data for Ci. This fundamental
machine learning problem has been termed open space risk
[78]. Worse yet, if probability calibration is used, x may be
ascribed to Ci with high confidence as distance from the
positive side of the decision boundary increases. Therefore,
the optimal closed set classifier operating in an open set
intrusion recognition regime is not only wrong, it can be
wrong yet being very confident that it is correct. An open
set intrusion recognition system needs to separateM known
classes from one another, but must also manage open space
risk by labeling a decision as “unknown” when far from
known class data. Problems with the closed set assumption
as well as desireable open set behavior are shown in Fig. 6.

The binary intrusion recognition task, i.e., intrusion detec-
tion appears to be a two-class closed set problem. However,
each label – intrusion or no intrusion – is respectively a meta-
label applied to a collection of many subclasses. While some
of the subclasses will naturally be known, others will not,
and the problem of open space risk still applies.

5.1.2 Anomalies Imply Class Labels.
The incorrect assumption that anomalies imply class labels
is largely related to the closed set assumption, and it is
implicit to all binary malicious/benign classification sys-

tems. Anomalies constitute data points that deviate from
statistical support of the model in question. In the classifi-
cation regime, anomalies are data points that are far from
the class to which they belong. In the open set scenario,
anomalies should be resolved by an operator, protocol, or
other recognition modalities. Effective anomaly detection
is necessary for open set intrusion recognition. Without it,
the implicit assumption of an overly closed set can lead
to undesirable classifications because it forces a decision
to be made without support of statistical evidence. The
conflation between anomaly and intrusion assumes that
anomalous behavior constitutes intrusive behavior and that
intrusive behavior constitutes anomalous behavior. Often,
neither of these assumptions hold. Especially in large net-
works, previously unseen benign behavior is common: new
software installations are routine, new users with different
usage patterns come and go, new servers and switches are
added, thereby changing the network topology, etc. Stealth
malwares, on the other hand, are specifically designed to
exhibit normal behavior profiles and are less likely to be
registered as anomalies than many previously unseen be-
nign behaviors.

5.1.3 Static Models are Sufficient.
In the anti-malware domain, the assumption of a static
model, which is implicit to the closed set modeling as-
sumption, is particularly insufficient because of the need to
update new nominal behavior profiles and malicious code
signatures. The attacks that a system sees will change over
time. This problem is often referred to as concept drift in
the incremental learning literature [79]. Depending on the
model, the time required for a full batch retrain may not be
feasible. A kth-order HMM with k >> 1, for example, may
perform quite well for some intrusion recognition tasks, but
at the same time may be expensive to retrain in terms of both
time and hardware and may require enormous amounts of
training data in order to generalize well. There is a temporal
risk associated with the amount of time that it takes to
update a classifier to recognize new malicious samples.
Therefore, even if that classifier exhibits high accuracy, it
may be vulnerable to temporal risk unless it possesses an
efficient update mechanism.
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5.1.4 No Feature Space Transformation is Required.

A key reason why machine learning algorithms are not over-
whelmed by the curse of dimensionality is that, due to sta-
tistical correlations, classes of data tend to lie on manifolds
that are highly non-linear, but effectively much smaller in
dimension than the input space. Obtaining a good manifold
representation via a feature transformation obtained from
either hand-tuned or machine-learnt optimization is often
critical to effective and discriminative classification. Many
approaches in the intrusion detection literature simply pass
raw log data or aggregated log data directly to a decision
machine [80], [81], [82], [83], [84], [85], [86]. The inputs often
possess heterogeneous scale and nominal and continuous-
valued features with aggregations, which ignore temporal
scale and varying spatial bandwidths. We contend that, like
any other machine learning task, fine-grained discriminative
intrusion recognition requires a meaningful feature space
transformation, whether learnt explicitly by the classifier
or carried out as a pre-processing task. Feature spaces for
intrusion recognition have been explored [87], [88], [89], [90],
[91], [92], [93], [94], [95]. While this research is a good start,
we believe that much additional work is needed.

5.1.5 Model Interpretation is Optional.

Effective feature space transformations must be balanced
with semantically meaningful interpretation. Unfortunately,
these two objectives are sometimes conflicting. Neural net-
works, which have been successfully applied to intrusion
recognition tasks [80], [96], [97], [98], [99], [100], [101], are
appealing because they provide the ability to adapt a fixed
set of basis functions to input data, thus optimizing the
feature space in which the readout layer operates. How-
ever, these basis functions correspond to a composition of
aggregations of non-linear projections/liftings onto a locally
optimal manifold prior to final readout, and neither the
semantic meaning of the space, nor the semantic meaning
of the final readout is well understood. Recent work has
demonstrated that neural networks can be vulnerable to
adversarial examples [102], [103], [104], which are mis-
classified with high confidence, yet appear very similar
to known class data. The lack of interpretability of such
models means that not only could intrusion recognition
systems be vulnerable to such adversarial models, but more
critically, machine learning techniques are not yet “smart”
enough to resolve most potential intrusions. Instead, their
role is to alert specialized anti-malware modules and human
operators to take swift action. Fast response and resolution
times are critical. Even if an intrusion detection system offers
nearly perfect detection performance, if it cannot provide
meaningful diagnostics to the operator, a temporal risk
is induced, in which the operator or anti-malware wastes
valuable time trying to diagnose the problem [1]. Also, as we
have seen from previous sections, many potential malware
signals (e.g., hooking) may stem from legitimate uses. It is
important to know why an alarm was triggered and which
features triggered it to determine and refine the system’s
response to both malicious and benign behaviors.

The interpretation and temporal risk problems are not
unique to intrusion detection. They are a key reason
why many diagnosis and troubleshooting systems rely

on directed acyclic probabilistic graphical models such as
Bayesian networks as well as rule mining instead of neural
networks or support vector machines (SVMs) [105].To better
resolve the model interpretation problem, intrusion detec-
tion should move to a more generic recognition framework,
ideally providing additional diagnostic information.

5.1.6 Class Distributions are Gaussian.
The majority of probabilistic models cited in this paper
assume that class distributions are single or multi-modal
Gaussian mixtures in feature space. Although Gaussian
mixtures often appear to capture class distributions, barring
special cases, they generally fail to capture distribution tails
[106].

There are several different types of anomalies. Empiri-
cal anomalies are anomalous with respect to a probabilis-
tic model of training data, whereas idealized anomalies are
anomalous with respect to the joint distribution of training
data. Provided good modeling, these two anomaly types are
equivalent. However, from an anomaly detection perspec-
tive, naïve Gaussian assumptions do not provide a good
match between empirical and idealized anomalies because
an anomaly is defined with respect to the tail of a joint
distribution and tails tend to deviate from Gaussian [106].
Theorems from statistical extreme value theory (EVT) pro-
vide theoretically grounded functional forms for the classes
of distributions that these class-tails can assume, provided
that positive class outliers are process anomalies – rare oc-
currences from an underlying generating stochastic process
– and not noise exogenous to the process, e.g., previously
unseen classes.

5.2 An Open Set Recognition Framework

Accommodating new attack profiles and normative behav-
ior models requires a method for diagnosing when query
data are unsupported by previously seen training samples.
This diagnosis is commonly referred to as novelty detection
in the literature [107]. Specifically in IDS literature, novelty
detection is often hailed as a means of detecting malicious
samples with no prior knowledge. The intuition is that by
spanning the space of normal behavior during training, any
novel behavior will be either an attack or a serious system
error. In practice however, it is infeasible to span the space
of benign behavior. Even on an individual host, “normal”
benign behavior can change dramatically depending on
configurations, software installations, and user turnover.
The network situation is even more complicated. Even for a
medium size network, services, protocols, switches, routers,
and topologies vary routinely.

We contend that novelty detection has a particularly
useful role in the recognition of stealth malware, but the
premise that we can span the entire benign input space
apriori is as unrealistic as the premise that signatures of
all known attacks solve the intrusion detection problem. In-
stead, novelty detection should be treated in terms of what it
does mathematically – as a tool to recognize samples that are
unsupported by the training data and to quantify the degree
of confidence to ascribe a model’s decision. Specifically, we
propose treating the intrusion recognition task as an open set
recognition problem, performing discriminative multi-class



IEEE COMMUNICATION SURVEYS & TUTORIALS, VOL. ??, NO. ??, ?? ???? 18

recognition under the assumption of unknown classes at
classification time. Scheirer et al. [78], [108] formalized the
open set recognition problem as tradeoff between minimiz-
ing empirical risk and open space risk – the risk of labeling
unknown space – or mathematically, the ratio of positively
labeled space that should have been labeled “unknown” to
the total extent of positively labeled space. A classifier that
can arbitrarily control this ratio via an adjustable threshold
is said to manage open space risk.

Scheirer et al. [78] extended the linear SVM objective
to bound data points belonging to each positive class by
two parallel hyperplanes; one corresponding to a discrim-
inative decision boundary, managing empirical risk, and
the other limiting the extent of the classification, managing
open space risk. Unfortunately, this slab model is not easily
extensible to a non-linear classifier. In later work [108],
[109], they extended their solution to multi-class open set
recognition problems using non-linear kernels, via poste-
rior EVT calibration and thresholding of nonlinear SVM
decision scores. EVT-calibrated one-class SVMs are used
in conjunction with multi-class SVMs to simultaneously
bound open-space risk and provide strong discriminative
capability [108]. The authors refer to this combination as
the W-SVM. For our discussion, however, the theorems
of Scheirer et al. [108] are more interesting than the W-
SVM itself. They prove that sum, product, min, and max
fusions of compact abating probability (CAP) models, again
generate CAP models. Bendale and Boult [110] extend this
work to show that CAP models in linearly transformed
spaces manage open space risk in the original input space.
While these works are interesting, the formulations limit
their application to probability distributions. Due to the
need for efficient model updates in an intrusion recognition
setting, enforcing probabilistic constraints on the recogni-
tion problem might be non-trivial, due to the need to re-
normalize at each increment. We therefore generalize the
theorems of Scheirer et al. [108] as follows.

Theorem 1. Abating Bounds for Open Space Risk: Assume
a set of non-negative continuous bounded functions {g1, . . . , gn}
where gk(x, x′) decreases monotonically with ||x − x′||. Then
thresholding any positively weighted sum, product, min, or max
fusion of a finite set of non-negative discrete or continuous
functions {f1, . . . , fn} that satisfy fk(x, x′) ≤ gk(x, x′) ∀k
manages open space risk.

Proof. Given τ > 0, define

g′k(x, x′, τ) :=

{
gk(x, x′) if gk(x, x′) > τ

0 otherwise.

Because of monotonicity of gk, for any fixed constant δ,
∃τδ :

∫
gk(x, x′, τ) dx < δ. Similarly,

∫
f ′k(x, x′, τδ) dx < δ.

Thus we can limit labeled area and f ′k manages open
space risk. Without loss of generality on k, max and
min fusion trivially manage open space risk. Because
summation is a linear operator,

∫ ∑
k f
′
k(x, x′, τ) dx =∑

k

∫
f ′k(x, x′, τ) dx. Since a finite sum of finite values

is finite, and
∑
k

∫
f ′k(x, x′, τ) dx < kδ it follows that

thresholded positively weighted sums of f ′k manage open
space risk. Bounded gk ⇒ ∃η : g′k(x, x′, τ) < η ⇒∫ ∏

k g
′
k(x, x′, τ)dx < ηkδ. This latter bound may not be

tight, but is sufficient to show that
∏
k g
′
k(x, x′, τ) man-

ages open space risk. We have proven Theorem 1 without
weights in the sums and products, but without loss of gen-
erality, non-negative weights can be incorporated directly
into gk.

From Theorem 1, it directly follows that many novelty
detection algorithms already in use by the IDS community
provably manage open space risk and fit nicely into the
open set recognition framework. For example, Scheirer et al.
[108] prove that thresholding neighbor methods by distance
manages open space risk. Via such thresholding, clustering
methods can be extended to an online regime, in which
unknown classes U1, . . . , UΩ are isolated [107]. Similarly,
thresholded kernel density estimation (KDE) of “normal”
data distributions has been successfully applied to the IDS
domain. Yeung and Chow [111] used kernel density esti-
mates, in which they centered an isotropic Gaussian kernel
on every data point xk. It is easy to prove that such estimates
also manage open space risk.

Corollary 1. Gaussian KDE Bounds for Open Space Risk.
Assume a Gaussian kernel density estimator where p(x) =
1
N

∑N
k=1

1
(2πσ2)D/2 exp

(
||x−xk||2

2σ2

)
. Thresholding p(x) by 0 <

τ ≤ 1 manages open space risk.

Proof. When N is the total number of points, each kernel is
given by fk(x, xk) = 1

N
1

(2πσ2)D/2 exp
(
||x−xk||2

2σ2

)
. By The-

orem 1, we can treat fk(x, xk) as its own bound. When
thresholded, fk(x, xk) will finitely bound open space risk.
The kernel density estimate, p(x) =

∑N
k=1 fk(x, xk) =

1
N

∑N
k=1

1
(2πσ2)D/2 exp

(
||x−xk||2

2σ2

)
also bounds open space

risk because it is a positively weighted sum of functions
that satisfy the bounding criteria in Theorem 1.

Thresholded nearest neighbor approaches and KDE re-
quire selection of a meaningful σ, and distance/probability
threshold. They also implicitly assume local isotropism in
the feature space, which highlights the need for a meaning-
ful feature space representation.

Neighbor and kernel density estimators are nonpara-
metric models, but several parametric novelty detectors in
use by the IDS community also provably manage open
space risk. Thresholding density estimates from Gaussian
mixture models (GMMs) is a popular parametric approach
to novelty detection with a similar functional form to KDE
[112], [113], [114], [115], [116]. For GMMs, however, the
input data x is assumed distributed as a superposition of a
fixed number of Gaussians: p(x) =

∑
k ckN(x|µk,Σk), such

that
∑
k ck = 1. Unlike nonparametric Gaussian KDE, in

which µ and σ are selected apriori, the Gaussians in a GMM
are fit via an expectation maximization technique similar
to that used by HMMs. By generalizing Corollary 1, we
can prove that thresholding GMMs probabilities manages
open space risk. When GMMs integrate to one, they are also
CAP models. Although this constraint often holds, it is not
required.

Corollary 2. GMM Bounds for Open Space Risk. Assume
a Gaussian mixture model. The thresholded density estimate from
this model bounds open space risk.
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Proof. By Theorem 1, the kth mode of a GMM, fk(x, µ) =
ckexp(− 1

2 (x−µ)T (x−µ)) is its own abating bound. Because
the superposition of all modes is a sum of non-negatively
weighted functions, each with an abating bound, GMMs
have an abating bound. Thresholding GMM density esti-
mates therefore manages open space risk.

Note that Corollary 2 only holds for the density estimate
from an individual GMM, and not for recognition functions
that leverage multiple GMMs. For example, the log ratio
of probabilities of two GMM estimates, log p1(x)

p2(x) does not

bound open space risk when p1(x)
p2(x) diverges as either p1(x)

or p2(x)→ 0. Similarly a recognition function p1(x) > p2(x)
does not provably manage open space risk because p1(x) >
p2(x) can hold over unbounded x.

There is a stark connection between GMMs and the
aforementioned HMMs. Similarly to HMMs, GMMs can
also be viewed as discrete latent variable models. Given
input data x and multinomial random variable z, whose
value corresponds to the generating Gaussian, the joint
distribution factors according to the product rule: p(x, z) =
p(z)p(x|z). p(z) is determined by the Gaussian mixture
coefficients ck. Therefore, the factorization of GMMs can be
viewed as a simplification of HMMs, with a factor graph,
in which latent variables are not connected and, therefore,
treated independent of sequence.

This raises two questions: First, can HMMs can be used
for novelty detection? And second, do HMMs manage open
space risk? Indeed, HMMs can be used for novelty detection
on sequential data by running inference on sequences in
the training set and thresholding the estimated joint prob-
ability (or log of the estimated joint probability) outputs.
This approach was taken by Yeung et al. [117] for host-
based intrusion detection using system call sequences. To
assess, whether HMMs manage open space risk, we need to
consider the form of an HMM’s estimated joint distribution.
For an N -length sequence, an HMM factors as

p(x1, .., xN , z1, .., zN ) = p(z1)
N∏
n=2

p(zn|zn−1)
N∏
n=1

p(xn|zn),

(1)
where x1, . . . , xN are observations and z1, . . . , zN are latent
variables. This leads to Corollary 3.

Corollary 3. HMM Bounds for Open Space Risk. As-
sume HMM factors p(z1), p(zn|zn−1), and p(xn|zn) satisfy the
bounding constraints in Theorem 1. Then thresholding the output
of a forward pass of an HMM bounds open space risk.

Proof. Under the assumption that p(z1), p(zn|zn−1), and
p(xn|zn) satisfy the bounding constraints in Theorem 1, then
the factorization in (1) is a product of these functions, which
by Theorem 1 manages open space risk.

Corollary 3 states that under certain assumptions on
the form of the factors in HMMs, an HMM will provably
manage open space risk. Unfortunately, it is not immedi-
ately clear how to enforce such a form, so many HMMs,
including those in [117] are not proven to manage open
space risk and may ascribe known labels to infinite open
space. Formulating HMMs that manage open space risk and

provide adequate modeling of data is an important topic,
which we leave for future research.

GMMs and HMMs are linear models. One-class SVMs
are popular nonlinear models, which have been successfully
applied to detecting novel intrusions [118], [119], [120],
[121], [122], [123]. In their Theorem 2, Scheirer et al. [108]
prove that one-class SVM density estimators [124] with a
Gaussian radial-basis function (RBF) kernel manage open
space risk. The decision functions for these machines are
given by

∑
k αkK(x, xk), where K(x, xk) is the kernel func-

tion and αi are the Lagrange multipliers. It is important to
note that non-negative αk are required to satisfy Theorem 1
in [108], and that multi-class RBF SVMs and one-class SVMs
under different objective functions are not proven to manage
open space risk.

5.3 Open World Archetypes for Stealth Malware Intru-
sion Recognition
The open set recognition framework introduced in Sec. 5.2
can be incorporated into existing intrusion recognition algo-
rithms. This means that there is no need to abandon closed
set algorithms in order to manage open space risk, provided
that they are fused with open set recognition algorithms.
Closed set techniques may be excellent solutions when they
are well supported by training data, but open set algorithms
are required in order to ascertain whether the closed set
decisions are meaningful. Therefore, the open set problem
can be addressed by using an algorithm that is inherently
open set for novelty detection and rejecting any closed
set decision as unknown if its support is below the open
set threshold. A model with easily interpreted diagnostic
information, e.g., a decision tree or Bayesian network, can
be fused with the open set algorithm as well, in order
to decrease response/mitigation times and to compensate
for other discriminative algorithms that are not so readily
interpretable. Note that many of the algorithms proposed by
Scheirer et al. are discriminative classifiers themselves, but
underperform the state of the art in a purely closed setting.

The interpretation of a thresholded open set decision is
trivial, assuming that the recognition function represents
some sort of density estimation. For a query point, if the
maximum density with respect to each class is below the
open set threshold, τ , then the class is labeled as “un-
known”. Otherwise, the query sample is ascribed the label
corresponding to the class of maximum density. Under the
open set formulation, the degree of openness can be con-
trolled by the value of τ . The desired amount of openness
will vary depending on the algorithm and the application’s
optimal precision/recall requirements. For example, a high
security non-latency sensitive virtualized environment that
is administered by many security experts can label many
examples as unknown and interpose state frequently for an
expert opinion. Systems that are latency sensitive, but for
which potential harm of intrusion is relatively low, might
have much looser open space bounds.

Note that an open set density estimator can be applied
with or without normalization to a probability distribution.
However, we can only prove that it manages open space risk
if the estimator’s decision function satisfies Theorem 1.

Open set algorithms can also be applied under many
different feature space transformations. When open set al-
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gorithms are fused with closed set algorithms, the two need
not necessarily operate in the same feature space. Research
in [125] and [110] has demonstrated the effectiveness of the
open set classification framework in machine-learnt feature
spaces. Bendale and Boult [110] bounded a nearest class
mean (NCM) classifier in a metric-learnt transformed space,
an algorithm they dubbed nearest non-outlier. They also
proved that under a linear transformation, open space risk
management in the transformed feature space will manage
open space risk in the original input space. Rudd et al.
[125] formulated extreme value machine (EVM) classifiers
to perform open set classification in a feature space learnt
from a convolutional neural network. The EVM formulation
performs a kernel-like transformation, which supports vari-
able data bandwidths, that implicitly transforms any feature
space to a probabilistically meaningful representation. This
research indicates that open set algorithms can support
meaningful feature space transformations, although what
constitutes a “good” feature space depends on the problem
and classifier in question.

Bendale and Boult and Rudd et al. also extended open
set recognition algorithms to an online regime, which sup-
ports incremental model updates. They dubbed this recogni-
tion scenario open world recognition, referring to online open
set recognition. The incremental aspects of this work are in a
similar vein to other online intrusion recognition techniques
[126], [127], [128], [129], [130], [131], [132], which, given a
batch of training points Xt at time t, aim to update the prior
for time t + 1 in terms of the posterior for time t, so that
Pt+1(θt+1) ← Pt(θt|Xt, Tt), where T is the target variable,
P is a recognition function, and θ is a parameter vector. If P
is a probability, a Bayesian treatment can be adopted, where:

Pt+1(θt+1|Xt+1, Tt+1) =
Pt+1(Tt+1|θt+1, Xt+1)Pt(θt|Xt, Tt)

Pt+1(Tt+1)
.

With a few exceptions, however, recognition functions in the
incremental learning intrusion recognition literature gener-
ally do not satisfy Theorem 1, and are not proven to manage
open space risk. This means that they are not necessarily
true open world classifiers.

Moreover, none of the work in [126], [127], [128], [129],
[130], [131], [132] addresses the pressing need to prioritize
labeling of detected novel data for incremental training. This
is problematic, because the objective of online learning is to
adapt a model to recognize new attack variations and be-
nign patterns – insights that would otherwise be perishable
within a useful time horizon. When intrusion recognition
subsystems exhibit high recall rates, however, updating the
model with new attack signatures is much more vital than
updating the model with novel benign profiles. Since label-
ing capacity is often limited by the numbers/bandwidths
of knowledgeable security practitioners, we contend that
the “optimal” labeling approach is to greedily rank the
unknown samples in terms of their likelihood of being
associated with known malicious classes. Given bounded
radially abating functions from Theorem 1, i.e., open set
decision functions, we can do just that, prioritizing labeling
by some malicious likelihood criterion (MLC).

The intuition behind the MLC ranking is as follows:
From the discussion in Sec. 4, malwares often share

components: even for vastly different malwares, similar
components yield similar patterns in feature space. Al-
though minor code overlap will not necessarily cause
(mis)categorizations of malware classes, it may cause novel
malware classes to be close enough to known ones in feature
space that they are ranked higher by MLC criterion than
most novel benign samples. Label prioritization by MLC
ranking could, therefore, improve resource allocation of se-
curity professionals and dramatically reduce the amount of
time that stealth malwares are able to propagate unnoticed.
Of course, other considerations besides MLC are relevant to
a truly “optimal” ranking, including difficulty of diagnosis
and likely degree of harm, but these properties are difficult
to ascertain autonomously.

A final useful aspect of the open world intrusion recog-
nition framework is that it is not confined to naive Gaussian
assumptions. Mixtures of Gaussians can work well for mod-
eling densities, but tend to deteriorate at the distribution
tails, because the tails of the models tend toward tails
from unimodal Gaussians, whereas the tails of the data
distributions generally do not. For recognition problems,
however, accurate modeling of tail behavior is important, in
fact, more important than accurate modeling of class centers
[133], [134]. To this end, researchers have turned to statistical
extreme value theory techniques for density estimation, and
open world recognition readily accommodates them. Both
[109] and [108] apply EVT modeling to open set recog-
nition scenarios based posterior fitting of point distances
to classifier decision boundaries, while [125] incorporated
EVT calibration into a generative model, which performs
loose density estimation as a mixture of EVT distributions.
Importantly, the EVT distributions employed by Rudd et
al., unlike Gaussian kernels in an SVM or KDE application
are variable bandwidth functions of the data. They are also
are directly derived from EVT and incorporate higher-order
statistics which Gaussian distributions cannot (e.g., skew,
curtosis). Finally, they provably manage open space risk.

6 CONCLUSION

Stealth malwares are a growing threat because they exploit
many system features that have legitimate uses and they
can propagate undetected for long periods of time. We,
therefore, felt the need to provide the first academic survey
specifically focused on malicious stealth technologies and
mitigation measures. We hope that security professionals in
both academic and industrial environments can draw on
this work in their research and development efforts. Our
work also highlights the need to combine countermeasures
that aim to protect the integrity of system components with
more generic machine learning solutions. We have iden-
tified flawed assumptions behind many machine learning
algorithms and proposed steps to improve them based on
research from other recognition domains. We encourage the
security community to consider these suggestions in future
development of intrusion recognition algorithms.

We have proven that a number of existing algorithms
currently used in the intrusion recognition domain already
satisfy the open set framework, and we believe that they
should be leveraged/extended both in theory and in prac-
tice to address the flawed assumptions behind many ex-
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isting algorithms that we detailed in Sec. 5.1. Adopting an
open world mathematical framework obviates the assump-
tions that intrusions are closed set, anomalies imply class labels,
and that static models are sufficient. How to appropriately
address the other assumptions requires further research.
Although some progress has been made in open world
algorithms, how to obtain a nicely discriminable feature
space while accommodating a readily interpretable model is
a topic which merits future research. Finally, how to model
class distributions without Gaussian assumptions demands
further mathematical treatment – statistical Extreme Value
Theory is a good start, but how select distributional tail
boundaries has yet to be gracefully defined, and, with the
exception of special cases, how to model the remainder of
the distribution (the non-extreme values) of non-Gaussian
data is still not well formalized.
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