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Abstract. Multi-task vision problems can often be decomposed into
separate tasks and stages, e.g., separating feature extraction and model
building, or training independent models for each task. Joint optimiza-
tion has been shown to improve performance, but can be difficult to apply
to deep convolution neural networks (DCNN), especially with unbal-
anced data. This paper introduces a novel mixed objective optimization
network (MOON), with a loss function which mixes errors from multi-
ple tasks and supports domain adaptation when label frequencies dif-
fer between training and operational testing. Experiments demonstrate
that not only does MOON advance the state of the art in facial attribute
recognition, but it also outperforms independently trained DCNNs using
the same data.

Keywords: Facial Attributes, Deep Neural Networks, Multi-Task Lear-
ing, Multi-Label Learning

1 Introduction
Given an input image or video, there are often multiple vision tasks to be accom-
plished, i.e., multiple objectives to be optimized. A few examples of multi-task
problems include the simultaneous detection and localization of multiple objects,
detection and tracking of objects, and the simultaneous computation of multiple
labels or attributes associated with an image. Often, such multi-task problems
appear to be readily decomposed into N independent optimization problems,
each of which can be solved separately. While in some cases separately opti-
mizing each objective is a valid approach, under certain constraints, e.g., when
task feeds into each other, or there is a need to share computed features or
representations, then the different task objectives must be mixed and often bal-
anced between one another. For these sorts of computer vision problems, multi-
task learning has benefited many areas, including multi-label image tagging and
retrieval [1,2,3,4], tracking [5], facial landmark estimation [6,7], face verification
[8], and face detection and head pose estimation [9,10,11].

This paper examines the multi-task problem of facial attribute recognition.
While this problem may seem far removed from previous problems to which
multi-objective learning has been successfully applied, we hypothesize that it is
well suited to multi-objective optimization because a solution can be approached
with similar intuition to that behind other successful multi-objective techniques.

ar
X

iv
:1

60
3.

07
02

7v
1 

 [
cs

.C
V

] 
 2

2 
M

ar
 2

01
6



2 Ethan M. Rudd, Manuel Günther, and Terrance E. Boult

Mixed	  
Objec+ve	  
loss	  over	  
all	  40	  

a4ributes	  
M
oon	  DCN

N
	  

	  (based	  on	  
VGG16)	  	  

DCNN	  Predic+ons	  	  
for	  all	  40	  A4ributes	  

DCNN40	  
Predict	  

Loss40	  

DCNN1	  
Predict	  

DCN
N
	  40	  

	  	  (VGG16)	  

DCN
N
	  1	  

(VGG16)	  

Loss1	  

160K	  training	  images	  	  
w	  40	  labels	  

40	  Nets	  =	  5.5	  Billon	  Parameters	  

	  
SoJmax	  

Classifica+on	  
Training	  	  

	  	  

SVM	  
Training	  

DCNN	  	  
	  Features	  

138M	  
	  Parameters	  

CASIA	  Webface	  
Separate	  end-‐to-‐end	  DCNNs	  Features	  +	  Classifiers	  

40	  Independent	  	  
SVMs	  for	  predic+on	  

Mixed-‐ObjecJve	  	  
OpJmizaJon	  	  

Network	  

Fig. 1: Three approaches to attribute learning (and other multi-
task problems). On the left is a conceptual model of the current and recent state-
of-the-art approaches, with features trained for classification problems then adapted as
inputs to independent SVMs for prediction. The middle approach attacks the prob-
lem with separately trained Deep Convolution Neural Networks (DCNNs). While we
demonstrate that this advances the state of the art in attribute accuracy, the cost is
prohibitive for practical use. This papers asks, “How can a single network outperform
the separately trained DCNNs?” On the right, is our answer, the mixed objective opti-
mization network (MOON) architecture with a domain adapting multi-task DCNN loss.
The MOON approach allows one network to efficiently learn to simultaneously output
predictions for all attributes, with reduced training and storage costs, while producing
better accuracy than independently trained DCNNs.

Facial attributes have a shared, albeit latent correlation, which imposes soft
constraints on the space of attributes, e.g. p(Male|Mustache, Bushy Eyebrows) u
1.

The most common approach to multi-label problems is to allow each task
to independently optimize its choice of features and recognition model, which
we call Features+Classifiers in Fig. 1. This was the original approach taken by
Kumar et al. [12] to learn facial attribute classifiers: The AdaBoost algorithm
was used to optimize feature selection separately for each facial attribute, and
independent SVM classifiers were built using those customized features. The
current state of the art [13] trains DCNN features and then uses SVMs for
classification. Features+Classifiers type models have held the state of the art
in facial attribute recognition since the first papers on the topic, and have also
been widely used for other attribute work [14,15,16].

We suspect that the Features+Classifiers approach for attributes cannot
exploit all correlation because the feature extraction and attribute modeling are
separate phases. While correlations could be learnt in each independent classi-
fier, or leveraged by some post-hoc fusion of several classifiers, these approaches
neglect implicit latent structure. Furthermore, any post-hoc fusion would rely
on some ad-hoc manner of selecting correlated attributes, which easily leads to
non-regular, inefficient, and cumbersome classifiers as the number of attributes
increases.
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Assuming multiple correlated vision tasks, intuition might suggest that if the
relationships between tasks are latent, the correlation between the tasks would
still be maximally exploited by independently trained models, each of which
train with all of the data. This suggestion indicates that separate optimization
of an end-to-end deep convolution neural network for each task would improve
accuracy and maximize the extraction of information in the data. We show that
this approach does improve accuracy over the Features+Classifiers approach, but
at significant computational costs. While these separate end-to-end DNCCs are
more accurate than the state of the art, building separate DCNNs is just engi-
neering and it does not answer if they maximally exploited the data. We address
more fundamental questions: “Can a single network outperform the separately
trained DCNNs, and if so, how?”

This paper demonstrates that the intuition that separately optimizing over
multiple tasks/labels maximally exploits the data does not hold, at least not
when using DCNNs with large but limited training data. We explore a joint
optimization by scalarizing the multi-objective classification problem into a sin-
gle mixed objective optimization network (MOON). MOON’s loss function uses
a mix of per-task squared errors that incorporate domain adapted weighting.
How can this approach improve the overall performance? We conjecture that the
mixed objective formulation provides a form of regularization which uses implicit
latent structure to constrain the space of possible models and we show that a sin-
gle MOON network outperforms separately trained networks, both in terms of
accuracy and speed. In summary, the contributions of this paper include:

– A novel mixed objective optimization network (MOON) architecture, which
learns multiple attribute labels simultaneously via a single convolutional
neural network and which supports domain adaption for multi-task DCNNs
by adjusting for different label frequencies between training and operation,

– A fair evaluation technique which incorporates source and target distribu-
tions into the classification metric, leading to the balanced CelebA (Cele-
bAB) evaluation protocol,

– Experiments which demonstrate that the MOON architecture significantly
advances state-of-the-art attribute recognition on the CelebA dataset, improv-
ing both accuracy and efficiency, and

– Evaluation of stability of the MOON architecture to fiducial perturbations
and data set imbalance.

Our experiments demonstrate that optimizing over all attributes simultaneously
offers a noticeable reduction in classification error compared to optimizing single
attributes over the same dataset and network topology.

2 Related Work
Multi-task learning has been applied to several areas of computer vision, which
rely on learning fine-grained discriminations or localizations under the constraint
of a global correlating structure. In these problems, multiple target labels or
objective functions must simultaneously be optimized.
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A common application of multi-label learning in the vision community is
image, or more generally, multi-modal tagging/retrieval [4,17]. In these prob-
lems, representations of the contents of an image across modalities (e.g., textual
descriptions, voice descriptions) are jointly inferred in a representation, which
is additionally derived from the raw images themselves. The resulting classifiers
can then be used to generate descriptions of novel images (tagging) or to query
images based on their descriptions (retrieval).

Facial model fitting and landmark estimation [18,19] is another multi-task
problem, which requires a fine-grained fit due to tremendous diversity in facial
features, poses, lighting conditions, expressions, and many other exogenous fac-
tors. Solutions also benefit from global information about the space of face shapes
and textures under different conditions. Optimization with respect to local gra-
dients and textures is necessary for a precise fit, while considering the relative
locations of all points is important to avoid violating facial topologies.

The reverse of facial model fitting – cross-pose synthesis – is similarly well
formulated under a multi-task/multi-objective approach: by simultaneously min-
imizing extrapolation and reconstruction errors, Yim et al. [11] were able to
achieve state-of-the-art results.

Applications of facial attributes include searches based on semantically mean-
ingful descriptions (e.g., “Caucasian female with blond hair”) [12,20,21], verifi-
cation systems which explain in a human-comprehensible form why verification
succeeded or failed [22], relative relations among attributes [15], social rela-
tion/sentiment analysis [23], and demographic profiling. Facial attributes also
provide information that is more or less independent of that distilled by con-
ventional recognition algorithms, potentially allowing for the creation of more
accurate and robust systems, narrowing down the search space, and increasing
efficiency at match time. Finally, facial attributes are interesting due to their
ability to convey meaningful identity information about a previously unseen
face, e.g., not enrolled in a gallery or used to train a classifier.

The classification of facial attributes was first pioneered by Kumar et al. [22].
Their classifiers depended heavily on face alignment, with respect to a frontal
template, each attribute using AdaBoost-learnt combinations of features from
hand-picked facial regions (e.g., cheeks, mouth, etc.). The feature spaces were
simplistic by today’s standards, consisting of various normalizations and aggre-
gations of color spaces and image gradients. Different features were learnt for
each attribute, and a single RBF-SVM per attribute was independently trained
for classification. Although novel, the approach was cumbersome, due to high
dimensional varying length features for each attribute, leading to inefficiencies
in feature extraction and classification [24].

In recent years, approaches have been developed to leverage more sophisti-
cated feature spaces. For example, gated CNNs [25] use cross-correlation across
an aligned training set to determine which areas of the face are most relevant
to attributes. The outputs of an ensemble of CNNs, one trained for each of the
relevant regions, are then joined together into a global feature vector. Final clas-
sification is performed via independent binary linear SVMs. Zhang et al. [23] use
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CNNs to learn facial attributes, with the ultimate goal of using these features
as part of an intermediate representation for a siamese network to infer social
relations between pairs of identities within an image.

Liu et al. [13] use three CNNs – a combination of two localization networks
(LNets), and an attribute recognition network (ANet) to first localize faces and
then classify facial attributes in the wild. The localization network proposes
locations of face images, while the attribute network is trained on face identities
and attributes, and is used to extract features which are fed to independent
linear SVMs for final attribute classification. This approach is the current state
of the art on the CelebA dataset. In these recent works, the same deep feature
space is learnt for all attributes, but is not necessarily attribute derived, and
independent binary classifiers are used to perform the attribute classifications.

There has been significant prior work in visual domain adaptation [26],
including more recent work for CNNs [27]. While the latter work is related to
ours, it addressed the more general problem of adaptation with unlabeled data.
We, however, are addressing one of the simpler forms of class imbalance adapta-
tion within our multi-task problem via a frequency reweighting and, hence, our
approach is a special case of the recent model unifying multiple domains with
multi-task learning [28].

3 Approach
For multi-task problems, the high level goal is to maximize accuracy over all
tasks, where each task has its own objective. In our case, the task is attribute
prediction, and we seek to simultaneously maximize prediction accuracy over all
attributes.

Formally, let I be the space of allowable images, and let M be the number of
attributes. For a given sample x ∈ I, let yi : x→ {−1,+1} be a function yielding
the binary ground truth label for x, where i ∈ {1, . . . ,M} is the attribute index.
Let H be the space of allowable decision functions and fi(x; θi) ∈ H be the
decision function, with parameters θi, learnt for the ith attribute classifier. Given
a set of loss functions Li(fi(x; θi), yi), each of which defines the cost of an error
on input x with respect to attribute i, let E(fi(x; θi), yi(x)) be the expected
value of that loss over the range of inputs I. Then the idealized problem is to
minimize the loss for each attribute, i.e.:

∀i : f∗i = argmin
fi∈H

E(fi(x; θi), yi(x)). (1)

For input x and attribute i, the classification result ci(x) and its corresponding
accuracy ci(x, y) are obtained by thresholding the associated network:

ci(x) =

{
+1 if fi(x) > 0

−1 otherwise,
and ci(x, y) =

{
+1 if yi(x)ci(x) > 0

0 otherwise.
(2)

Intuitively, this appears to lead to M independent optimization problems,
for which one should be able to optimize each fi separately. Accordingly, the
most common approach to attribute classification in prior work is to use inde-
pendent binary classifiers in some characteristic feature space to classify each
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attribute [22,13]. The original approach taken by Kumar et al. [22] used sepa-
rate per-attribute AdaBoost learnt feature space representations. Recent state
of the art approaches use convolutional neural networks, trained on face identi-
fication and verification datasets to arrive at an underlying feature space repre-
sentation [13], and extract features by truncating the network prior to the final
softmax layer. Both [22] and [13] learn M independent binary classifiers trained
with a hinge-loss objective. The hinge-loss objective function is:

argmin
θi

Li(x, θi, yi) = max(0, 1− yi(x)fi(x; θi)). (3)

When the classifier is a dot product, i.e., fi(x) = θTi (1, xT )T , solving this objec-
tive function results in a binary support vector machine (SVM) – the hyperplane
that separates the two binary classes of data (+1 and −1) with maximum soft-
margin. Given M attributes, this approach leads to M binary classifiers, each
of which outputs a decision score. A positive decision score corresponds to the
predicted presence of an attribute, while a negative decision score corresponds
to its absence.

In order to learn latent correlations, it is also important to use attribute
data directly to derive the feature space. Although Liu et al. [13] claim that
latent features of attributes are learnt by their feature space representation while
optimizing over a dataset for an identification task, the extent to which this is
true for attributes which have little to do with facial identity (e.g., Smiling) is
questionable. Rather, intuition suggests the opposite – that networks trained for
identification of individuals would learn to ignore such attributes. To uncover
such correlations, the network used to learn the feature space should be directly
trained on attribute data and the distribution of attributes in training should
match the operational or testing distribution.

This leads to the problem of how to appropriately balance the dataset used
to learn attribute features. A perfectly balanced dataset can be obtained by
collecting separate images for each attribute, but this leads to an enormous
dataset, with different identities for different attributes, effectively yielding a
relatively small number of training images per attribute in proportion to the size
of the dataset [22]. This approach also does not account for label correlations.
Using a multi-label dataset, e.g., CelebA [13] allows us to leverage multiple
labels in a mixed objective, but the distribution is highly imbalanced for many
attributes (cf. Sec. 4). Unfortunately, the attribute distribution of a given target
population does not always follow the dataset bias.

In a separate per-class training, balancing the number of positive and nega-
tive examples that are input to the classifier is easy, e.g., by weighting or sam-
pling. However, balancing is nearly impossible for multi-task training. Further-
more, for many tasks, the training frequencies and the operational/test frequen-
cies need not match. Our solution to both problems is to define a mixed objective
function which includes domain adapted weights that incorporate the difference
between the source and target distributions. First, we compute the source dis-
tribution Si from the training set for each attribute i by counting the relative
number of occurrences of the positive S+

i and negative S−i samples. Given a
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binary target distribution, T+
i and T−i , for each attribute i we assign a proba-

bility for each class:

p(i|+ 1) =

1 if T+
i > S+

i

S−
i T

+
i

S+
i T

−
i

otherwise
and p(i| − 1) =

1 if T−i > S−i
S+
i T

−
i

S−
i T

+
i

otherwise.
(4)

We would like to incorporate this domain adaptation directly into a loss
function, but we need a loss function which additionally mixes all attribute
predictions and simultaneously infers latent correlations between attribute labels
and image data. One approach would be to combine all of the objective functions
for each attribute into one joint objective function, e.g.:

argmin
θ

M∑
i=1

Li(x, θi, yi), (5)

where θ = {θ1, . . . , θM} are the network weights, which for legibility reasons are
left out in the following equations. We can then solve that optimization problem
via backpropagation using raw attribute images and labels as a training set.
While we could use many potential loss functions, for MOON, we optimize a
weighted mixed task squared error:

L(x, y) =

M∑
i=1

p(i|yi(x)) ||fi(x)− yi(x)||2, (6)

where fi(x) is the network output for attribute i, and for which the output
dimensionality is the number of attributes M . Across an N element training set
X with labels Y this yields:

L(X,Y ) =

N∑
j=1

M∑
i=1

p(i|Yji) ||fi(Xj)− Yji||2. (7)

Replacing the standard loss layer of a deep convolutional neural network with a
layer implementing Eq. (7) results in the mixed objective optimization network
(MOON) architecture. MOON incorporates attribute correlations and can adapt
the bias of the training dataset to a target distribution.

4 Experiments
4.1 Dataset
For comparison with other attribute benchmarks, we conducted our experiments
on the CelebA dataset [13]. The dataset consists of batches of 20 images from
approximately 10K celebrities, resulting in a total of more than 200K images.
The first 8K identities (160K images) are used for training, and the remaining
2K identities are used in the validation and test sets; 1K for validation, 1K for
test. Each image is annotated with 5 keypoints (both eyes, the mouth corners
and the nose tip), as well as binary labels of 40 attributes. These attributes are
shown in Fig. 2, which also shows the relative number of images in which the
attribute is hand-labeled as present (blue) or absent (tan), respectively. As one
can observe, for many of the attributes, there is a strong bias for either of the
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Fig. 2: CelebA Dataset Bias. This figure shows the distribution of the attribute
labels throughout the CelebA dataset: presence (blue) or absence (tan).

two classes. This is especially the case for certain attributes, e.g., few images
are labeled as Bald or Wearing Hat, while the majority of the facial images are
labeled as Young.

The CelebA dataset provides a set of pre-cropped face images, which were
aligned using hand-labeled keypoints. For our experiments we use these images,
but later (cf. Sec. 5.1) we show that the trained classifier can also work with
faces which are not perfectly aligned, and we introduce ideas to make our MOON
network more robust to mis-alignment.

4.2 Evaluating MOON on CelebA

In order to compare with existing approaches, which do not account for dataset
bias, we evaluate MOON on the CelebA dataset, setting the target distribution
to the source distribution, i.e., ∀i Ti ≡ Si.

Using the CelebA training set, we trained a deep convolutional network to
predict attributes under a MOON architecture. As the basic network configu-
ration, we adopted the 16 layer VGG network from [29], where we replaced the
final loss layer with the loss in Eq. (7). We also changed the dimension of the
RGB image input layer from 224× 224 pixels to 178× 218 pixels, the resolution
of the aligned CelebA images. In opposition to [29], we do not incorporate any
dataset augmentation or mirroring, but train the network purely on the aligned
images. Due to memory limitations, the batch size was set to 64 images per train-
ing iteration and, hence, the training requires approximately 2500 iterations to
run a full epoch on the training set. The learning rate was chosen to be 0.00001,
as higher learning rates would lead the network to learn only the dataset bias.
During training we update the convolution kernel weights using the backprop-
agation algorithm with an RMSProp update rule and an inverse learning rate
decay policy.
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Fig. 3: Network training errors. This figure shows the error trends during
network training in terms of average classification errors as given in Eq. (9).

We ran two types of network training, one training a separate network for
each attribute, and one optimizing the combined MOON network. Separately
training classifiers is the most common approach taken in the literature. By
training one network for each of the attributes individually, the network can
concentrate on a single attribute and can therefore ignore all parts of the image
that are not required to classify that attribute. During the separate training,
we presented each network with all images from the training set, and a single
input to the loss layer encoded with labels that denoted the presence (+1) or
the absence (−1) of the attribute. Loss was computed according to Eq. (6). As
each network required several hours of training time on an NVIDIA Titan-X
GPU, we chose to train each network for ≈ 2 epochs (5000 iterations). To check
if 2 epochs iterations are sufficient to attain convergence to a maximum valida-
tion accuracy, we continued the network training for four attributes. We selected
these attributes – Attractive, Chubby, Narrow Eyes, and Young – to have vary-
ing statistics from the dataset: While Attractive is relatively balanced, images
with Chubby and Narrow Eyes are mostly not contained in the dataset, whereas
Young is over-represented. The error trends (evaluated at every 2 epochs) are
shown in Fig. 3(b). Although the error on the training set decreases with addi-
tional epochs, the errors on the validation and test sets start to increase after
approximately 4 - 6 epochs, with only a little improvement over the 2 epochs net-
work. This leads us to believe that improvements in validation accuracy beyond
2 epochs are negligible.

When training our MOON network, we use a single network with 40 outputs
to learn all attributes simultaneously. The loss layer of the MOON network
is set up such that – following Eq. (7) – it minimizes the average weighted
Euclidean distance1 between the network output and the 40 binary attribute
values. We trained the network for 40 epochs since the validation error after 10

1 The weights in this experiment are all equal to one, following from identical source
and target distributions Si = Ti.
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Fig. 4: Error Rates on CelebA. This figure shows the classification errors on
the test set of the CelebA dataset for several algorithms. The results of Face Tracer
and LNets+ANet are taken from Liu et al. [13]. The Separate networks were evaluated
after 2 epochs, while the MOON network is evaluated after 24 training epochs.

epochs was still decreasing. The complete error trends can be seen in Fig. 3(a).
Based on the minimum validation set error, we choose our final MOON network
after 24 epochs. Note that this is not the optimal number of epochs in terms
of minimizing test error, but it is the proper way to evaluate our classifier with
respect to the CelebA protocol. While individual classifiers seem to take fewer
training iterations than MOON to minimize their validation error, the total
training time of the MOON network is still lower than the sum of the separate
network training times. We suspect that the additional iterations required by
the MOON network are needed to learn a more sophisticated latent structure
than those learnt by the separate networks.

To compare with the results of Liu et al. [13], we measure the success of
our training in terms of classification error,2 i.e., the number of cases, where
our classifier f predicted the incorrect label, relative to the total number of test
images:

ei(X,Y ) =
1

Ntest

Ntest∑
j=1

(
1− ci(Xj , Yj)

)
. (8)

2 Liu et al. [13] presented their results in terms of classification success, which is simply
1 − E(X,Y ).
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The Average classification error is computed by taking the average of the clas-
sification errors over all (M) attributes:

E(X,Y ) =
1

M

M∑
i=1

ei(X,Y ). (9)

Note that this error does not differentiate between positive and negative values.
Hence, for very biased attributes, a random classifier which always predicts the
dominant class would reach a low classification error, e.g., for Bald the random
classification error would be as low as 2.24 %!

The classification errors for all the attributes are visually displayed in Fig. 4.
There, we also included two results3 from Liu et al. [13]. The Face Tracer results
reflect the best non-neural-network based algorithm that has been evaluated so
far on the CelebA dataset. LNets+ANet represent the state-of-the-art results
on this dataset obtained by combining three different deep convolutional neural
networks with support vector machines.

The average classification errors over all attributes for each classifier are: Face
Tracer: 18.88 %, LNets+ANet: 12.70 %, Separate: 9.78 %, and MOON: 9.06 %.
Thus, our MOON network achieves a relative reduction of 28.7 % of the error
over the state of the art, and a 7.4 % reductuion over the separately trained
networks. For almost all attributes, the results of our two approaches outperform
the LNets+ANet state-of-the-art results, and the MOON network gives a lower
error than the Separate networks trained specifically on a single attribute.

Interestingly, for several attributes that are traditionally not considered to
be useful in face recognition, such as hair color (e.g. Brown Hair), hair style (e.g.
Straight Hair), accessories (e.g. Wearing Necklace), and non face-related attributes
(e.g. Blurry), our approach outperforms the LNets+ANet combination by an
especially large margin. We suspect that this effect is due in part to the fact that
in [13], the ANet network’s feature space was derived from training on a face
recognition benchmark, and later adapted to the attribute classification task,
which offers little direction for inferring the hidden representations of non facial
identity related attributes.

4.3 CelebAB: A Balancing Act
As demonstrated in Sec. 4.2, MOON obtains state-of-the-art classification accu-
racies on the CelebA dataset. However, it is unclear how meaningful these results
are for target distributions with different attribute frequencies.

Since our objective is to learn the network outputs to be +1 or −1 corre-
sponding to presence or absence of attributes, respectively, we plotted the score
distributions of the validation set for four of the attributes. From Fig. 2 we
observe a strong bias for several attributes in the CelebA dataset, which we can
find in the score distribution plots of Fig. 5(a), too. Note that the positive and
negative score distributions have been normalized independently, otherwise the
positive scores for Narrow Eyes and Chubby would not be visible. For attributes

3 For the two algorithms from [13] we have converted classification success into clas-
sification error, and averaged the numbers to recompute the final average.
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Attractive

Young

Narrow Eyes

-1 0 1

Chubby

(a) Unbalanced

Attractive

Young

Narrow Eyes

-1 0 1

Chubby

(b) Balanced

Fig. 5: Score distributions. This figure shows the distributions of the network
outputs for four different attributes, when classifying images with present (blue) and
absent (tan) attributes. In (a) network outputs after training with unbalanced data are
shown, while in (b) the outputs of the network after training with the balancing loss layer
are presented. Positive and negative score distributions are normalized independently.

with a balanced number of positive and negative examples, such as Attractive,
the distributions of negative (tan) and positive (blue) scores are also balanced.
On the other hand, for unbalanced attributes, such as Young, Narrow Eyes or
Chubby, the dominant class is well distributed around its desired value, but the
other class has not been learnt well. Interestingly, a comparably small bias in the
training set (for Young there are 77 % positives and 23 % negatives) can destroy
the capability of the network to learn the inferior class.

Intuitively, when having such unbalanced score distributions, one would expect
that the threshold of 0 that we use for classification should be adapted. However,
given that the validation and test set follow the same bias as the training set,
a threshold of 0 works well for the CelebA dataset. Even more astonishingly, a
wide range of thresholds around 0 will lead to approximately the same classifica-
tion error and, hence, the network has learnt to balance between false positives
and false negatives – including the dataset bias.

To obtain balanced score distributions, we chose to have a balanced target
distribution, i.e., T+

i = T−i = 1
2 for each attribute i. In our custom implementa-

tion of the loss layer in Eq. (6), we obtain the weights p(i|yi(x)) via sampling. For
each attribute i with target value yi(x) ∈ {−1,+1} we only backpropagate the
error with the probability p(i|yi(x)); otherwise we set the gradient for attribute
i to 0. The more the source and target distributions differ, the more elements in
the gradient get reset.

The resulting validation set score distribution for the same four attributes
generated by the rebalanced MOON network after 34 training epochs can be
seen in Fig. 5(b). Apparently, the score distributions are much more balanced,
and the threshold 0 seems to make more sense now. Thus, one would expect that
the classification error would be lower, too. However, due to the high dataset
bias, which is also present in the validation and test sets, the total average
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classification error of the balanced network on the (unbalanced) CelebA test set
is 13.67 %.

Although this classfication error is larger than that obtained by the unbal-
anced MOON network, this is an artifact of the significant imbalance in the
original test set ; the error measure in Eq. (8) has not been adapted to the target
domain. A fair comparison would measure the balanced classification error eBi
that weights the positive and negative classes according to the target distribu-
tion:

eBi (X,Y ) =

Ntest∑
j=1


ci(X,Y )T+

i

N+
i

if Yi = +1

ci(X,Y )T−
i

N−
i

if Yi = −1,
(10)

where N+
i and N−i are the respective numbers of positive and negative examples

of attribute i in the test set. When computing classification error of the rebal-
anced MOON network example with T+

i = T−i = 1
2 , we obtain an average eBi

error of 12.98 %.
Note that the unbalanced MOON network, which is not trained to follow the

target distribution, obtains an eBi error of 21.41 %. This is precisely what we
would expect of a domain adaptation system: A classifier adapted to the target
distribution does better than a classifier that is not.

5 Discussion
5.1 Handling Mis-aligned Images
In our experiments in Sec. 4, we used aligned images to train and test the
networks. To show that MOON is in principle able to deal with badly aligned
images, we conducted an additional experiment in which we used perturbed test
images. To perturb the images, we applied a random rotation within ±10◦, a
random scaling with a scale factor between 0.9 and 1.1, and a random translation
of up to 10 pixels in either direction to the pre-aligned faces in the CelebA
dataset. We selected these parameters to be well outside of the error range of
a reasonable (frontal face) eye detector. Alignment errors of these magnitudes
have been shown to highly influence the performance of many traditional face
recognition algorithms [30].

When running this perturbed test set through our (unbalanced) MOON net-
work, which was trained purely on aligned faces, we obtain a classification error
of 11.62 %, which is higher than the 9.06 % obtained with aligned test images,
but still better than the current state of the art in [13]. We assume that we
can improve the network stability against mis-alignment by incorporating aug-
mented (e.g., misaligned perturbations) training data into the training process,
since this has shown to improve the performance of deep convolutional neural
networks [31].

Some preliminary experiments seem to verify this claim: When training with
mis-aligned and horizontally mirrored images (in total 10 copies for each training
image), we were able to decrease the classification error on the mis-aligned test
images to 9.50 %. Unfortunately, this also caused a slight performance degra-
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dation when evaluating on purely aligned images, causing classification error to
increase from the 9.06 % to 9.23 %. Hence, in principle, the MOON architecture
is able to work with aligned and mis-aligned images, as long as the conditions
during training and testing are similar. These tests further highlight the need to
select data augmentation methods appropriate to the respective quality of the
actual alignment algorithms used in real end-to-end systems.

5.2 Hinge Loss

In order to test whether we have fully optimized our objective function, we
performed an additional SVM training on top of the 40-dimensional attribute
vector from the network. We took the finally selected (unbalanced) MOON net-
work after 24 epochs, and extracted attribute vectors for the training, validation
and test sets of CelebA. We trained 40 linear SVMs [32] on the training set, and
used the validation set to optimize the C parameter for each attribute indepen-
dently. Then, we classified all extracted test set attributes. The final result was
a classification error of 9.11 %, which is very close to, but still above the 9.06 %
that we obtained using the classification as given in Eq. (2). Hence, it seems
that the MOON network has learnt a representation that is able to perform a
multi-objective classification similar to the hinge-loss from Eq. (3).

6 Conclusion
The MOON architecture achieves an accurate, computationally efficient, and
compact representation, whose attribute classification performance advances the
state of the art on the CelebA dataset. Further, our experiments did not rely
on any datasets external to CelebA to train our network, unlike competing
approaches. We investigated the dataset bias in CelebA and proposed domain
adaptation methods which allow us to define a different target distribution with-
out changing the training set. We incorporate these methods directly into our
mixed objective function and perform a demonstration on a novel re-balanced
version of CelebA, the CelebAB dataset, for which we propose a different eval-
uation error measure.

Our work raises a philosophical question about the mathematics of attribute
recognition: How should the attribute recognition problem be treated? Con-
trary to previous work, in which attribute labels are independently learnt, our
approach implicitly leverages attribute correlations and explicitly forces hidden
layers in the network to incorporate information from multiple labels simultane-
ously. As discussed in [33], many attributes can be recognized along a continuous
range, some (e.g., Big Nose, Oval Face, Young) more than others (e.g., Male,
Eyeglasses). Unlike other classifiers trained on purely discrete labels, MOON’s
weighted Euclidean loss allows it to simultaneously learn labels along a continu-
ous range, although continuous labels were not provided in the dataset that we
used. Whether our MOON network’s output scores resulting from training on
discrete labels reflect a reasonable ranking continuity in terms of the degree of
expression of the underlying attribute has yet to be investigated.
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