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Abstract—Developing intelligent machines that recognize facial
expressions, detect spontaneous emotions and infer affective
states of an individual are all challenging problems. While
significant amount of work in recent years has focussed on
advancing machine learning techniques for affect recognition
and affect classification, the prediction of mood from facial
analysis and the usage of mood data have received less atten-
tion. Questionnaires for psychometric measurement of mood-
states are common, but using them during interventions that
target psychological well-being of people are arduous and
may burden an already troubled population. In this work, we
present mood prediction as a sequence learning problem that
uses facial Action Units (AUs) as inputs to a Long Short-Term
Memory (LSTM) machine. We create two separate automated
LSTM models — a total mood disturbance predictor and a
mood sub-scale predictor, and then use them to aid behav-
ioral assessments of engagement. Our mood-aware engagement
predictor uses total mood disturbance score, and our analysis
compares both mood sub-scale predictors and an overall mood
disturbance predictor for engagement prediction. We evaluate
our mood models on a large scale dataset consisting of 8M+
frames from multiple videos collected from 110 subjects during
a web-intervention for trauma recovery. Our experiments show
that mood-aware engagement predictor using our novel visual
analysis approach performs significantly better or on par with
using self-reports.

1. Introduction

Each year millions of people are affected by trauma.
Emotional and psychological trauma is a result of extraor-
dinarily stressful events such as military service, domestic
violence, accidents that can shatter a person’s sense of secu-
rity, making them feel helpless [1]. Recovery from trauma
is a complex process. In recent years, web-based treatment
has shown promise to provide scalable, proactive, person-
centric and evidence-based solution for trauma recovery [2],
[3], [4]. In face-to-face psychotherapy sessions, psychologist
monitor series of complex processes such as spontaneous
facial expressions, emotions, mood swings, engagement and
other behaviors when working with patients undergoing
treatment for trauma recovery. Typically psychologists are
trained to balance patients mental state with doctors broader
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goals. Due to dynamic and uncertain nature of trauma
recovery, there is need to develop self-support tools and
technologies that adapt to patient’s needs while being sensi-
tive to his/her behavior, moods and emotional state. Further,
research in this domain suggests that adaptive self-help
websites can aid people in coping with mental health issues
and trauma recovery [5].

Facial analysis gives strong clues to the internal emo-
tional state of a person [6], [7]. While emotions and expres-
sions are important and frequently studied with respect to
faces, basic emotion categories fail to capture the richness
of facial behavior. In some scenarios, it is possible to judge
emotion of a person through facial expressions, but internal
mood states of person cannot be observed through such
methods [8]. This effect is elevated in case of subjects suf-
fering from trauma, where they are often reluctant to express
themselves openly. Negative mood has been linked to poorer
cognitive and independent functioning in trauma recovery
subjects leading to lower quality of life, higher mortality
and greater declines in physical and mental health status [1],
[9]. Automated mood prediction methods from facial videos
have huge the potential to have a significant impact not only
for trauma recovery but across a wider-range of domains.
Recently, Katsimerou et al. [10] conducted one of the first
studies on automated mood prediction from visual input and
noted that “mood estimation from recognized emotions is
still in its infancy and requires separate attention.”

In affective computing literature, often emotion and
mood are used interchangeably. However, as noted by
Ekkekais et al. [11], these are distinct characteristics of
one’s affective state. Emotion is characterized by a set of
inter-related sub-events concerned with a particular object,
person or thing. However, mood typically lasts longer than
emotions and is generic rather than about a specific object or
a thing. Mood is heavily influenced by external factors such
as environment, physiology, and current emotions. Mood is
dynamic and can last minutes, hours or even days. Moods
are emotions over sustained time [8], [9], [12].

For this work, the ground truth for the subject’s mood is
a first 24-questions of the widely used standard “Profile of
Mood States - Short Form (POMS-SF)” [13] questionnaire
that seeks to measure six distinct mood subscales: tension,
depression, anger, vigor, fatigue, and confusion. We perform
training and evaluation of our mood prediction models on
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Figure 1: Automated Mood Prediction for Mood-Aware Context Sensitive Engagement Prediction: Trauma patients are often
reluctant to express themselves openly, suffer from mood changes that last an extended period, which in turn effects their cognitive
abilities. We propose Automated Mood-Aware Contextual Engagement prediction for trauma subjects. The top part of the figure shows
mood prediction pipeline aimed at predicting the mood of trauma patients from facial videos. The mood estimates are then used to
pre-condition learning for context sensitive engagement prediction models. Temporal deep learning methods are used to learn long-term
dependencies to estimate mood and its interplay with contextual engagement.

a dataset that is collected from trauma subjects while they
work on a recovery website http://ease.vast.uccs.edu/. The
dataset consists of hundreds of videos collected from 110
subjects with self-reported POMS at three time-points per
session, more details in Section 4. Subjects do up to six
different modules; herein we consider only two: triggers and
relaxation.

The assessment of mood is an important indicator for
the evaluation of intervention effects. For example, the
standard POMS-SF consists of a detailed questionnaire of 37
questions, which some subjects find intrusive and burdening.
Subjects suffering from trauma are often distracted, lack
focus, or at times are incapable of providing such detailed
feedback [14]. Hence, there is a need to develop automated
non-intrusive methods for mood prediction. As shown in
Section 5 some aspect of mood is significantly changed by
each module, so if mood is to be used during treatment
it would require multiple measurements, which further in-
creases the need for automated mood estimation.

In this work, we take advantage of recent advances in
computer vision and deep learning and show that facial
video data captured over sustained periods can reliably
predict the mood of a person with sufficient accuracy to use
it in engagement prediction. We build on top of our recent
work [15] on contextual engagement prediction from facial
videos and develop a framework for mood-aware contextual
engagement prediction. An overview of the employed sys-
tem is shown in Fig.1. The contribution of this work are as
follows:

1) We explore automated prediction of mood distur-
bance based on automatically computed AUs and
LSTMs. We develop mood prediction models in the

domain of trauma recovery across two contextually
different tasks: Relaxation and Triggers. To the best
of our knowledge, this is the first work of its kind.

2)  We show that contextual engagement models can be
enhanced by incorporating automated mood predic-
tions for trauma recovery subjects.

3) We build automated models for mood prediction
at sub-scale and total mood disturbance levels,
demonstrating the importance of sub-scale model-
ing for mood prediction.

4)  We evaluate the proposed mood prediction method-
ology on large scale facial video dataset consisting
of 8M+ frames and hundreds of videos. The asso-
ciated dataset for AUs and Profile of Mood States
(POMS) will be publicly released.

2. Related Work

Our work has relations to methods and techniques ex-
plored from multiple communities such as psychology, af-
fective computing, deep learning, web-based intervention,
trauma recovery. Further, our work draws inspiration and
builds on top of existing research works from these areas
which are reviewed in this section.

Mood Assessment and Measures: Affect, expressions,
emotions, and mood are related, yet conceptually distinct in
terms of the phenomenon they represent [12]. Klienke e? al.
[9] and Adelmann et al. [16] have demonstrated the effects
of facial expression on mood states of subjects through
extensive psychological studies. Studies in psychology (see
Ekkekakis et al. [11] for a detailed survey) has also lead
to the development of various mood assessment measures
such as Profile of Mood States and Positive and Negative



Affect Schedule (PANAS). In the domain of sports physiol-
ogy, Wang et al. [17] presented a measurement of mood
states from physiological signals. More recently Sano et
al. [18] presented a system for automatic stress and mood
assessment from daily behaviors and sleeping patterns. More
recently, Katsimerou et al. [10] proposed a novel framework
for predicting mood, as perceived by other humans, from
the emotional expressions of a person. The key differences
between the approach of Katsimerou et al.and ours are that
we predict mood from user self-reports rather than external
annotators and further, we demonstrate the interplay of
mood on engagement tasks for web-based trauma recovery.

Engagement Prediction: Engagement prediction from
facial video data followed by user inputs (either self-reports
or external annotation) has been looked into by researchers
from the domains of student learning [19], [20], [21] and
human-robot interaction [22], [23]. In the domain of student
learning, methods typically involve extracting facial features
followed by machine learning algorithms to predict student
engagement. In the case of human-robot interaction, works
of Castellano et al. [24] and Salam et al. [22] have shown
that engagement prediction is contextual and task dependent.
They have demonstrated that additional knowledge of user
context (e.g. who the user is, where they are, with whom
they are, the task at hand, etc.) can better predict an affective
state of the user during Human-Robot Interactions (HRI). In
the case of both student learning and HRI, it is assumed that
subjects (students) are co-operative and in control of their
emotions, which is not typically the case for trauma subjects.

Facial Features: Work in the domain of engagement
prediction, emotion prediction, and facial expression analy-
sis has benefitted tremendously from the recent advances in
the domain of facial feature extraction, face tracking, and fa-
cial action unit coding. Automated detection of facial action
units (AUs) [25], [26], [27] have proved to advance multiple
face based affective computing systems [6]. In our work, we
rely on AUs extracted from video frames as an intermediate
representation provided as input to our sequence learning
models. Recent facial expression recognition systems can
recognize several AUs with reasonable accuracies [25], [28],
[29]. Finally, there have been multiple notable works in
the domain of facial expression and affect analysis that has
pushed state of the art in affect recognition beyond six basic
emotion categories [30], [31].

Deep Learning for Affect Detection: Significant ad-
vances in deep learning have lead to the development of
various affect detection methods based on deep learning.
More specifically, researchers have applied deep learning
techniques to problem such as continuous emotion detection
[32], facial expression analysis [33], facial action unit detec-
tion [34] and others. Deep learning methods have used video
data, sensor data or multi-modal data [35]. As noted earlier,
moods are diffused over longer durations than emotions, and
hence there is need to employ methods that can integrate
long-term temporal information in learning framework. Such
problems are often modeled as sequence learning problems
[36], [37]. To address sequence learning, various methods
such as Recurrent Neural Networks, Gated Recurrent Units,

and Long Short-Term Memory were proposed and employed
in wide range of problems [38]. In this work, we explore
LSTMs, a specialized form of recurrent neural networks, to
model long-term mood prediction and mood-aware engage-
ment prediction.

3. Long Short-Term Memory for Mood Pre-
diction

In this section, we present the details about LSTMs
used to model long-term dependencies of AUs. LSTMs
have the ability to handle longer sequences. We model the
problem of mood prediction as a sequence learning problem,
where input consists of sequences x; of AUs computed from
facial video data of a particular length. Each sequence is
associated with a label y; which relates to POMS self-report
provided by trauma subjects. Our implementation is based
on TensorFlow which in turn is based on [39], [40], and we
follow their notation.

We let subscripts denote timesteps and superscripts de-
note layers. All our states are n-dimensional equal to the
number of AUs tracked, currently 20. Let hi € R” be a
hidden state in layer [ at time-step ¢. Let T}, ,,, : R® —
R™ be an affine transform from m to n dimensions, i.e.
Thmx = Wax + b for some W and b). Let © be element-
wise multiplication and let hY be an input data vector at
time-step . We use the activations hl to predict y;, since
L is the number of layers in our deep LSTM.

The LSTM has complicated dynamics that allow it to
easily “memorize” information for an extended number of
time-steps using memory cells ¢, € R™. Although many
LSTM architectures that differ in their connectivity structure
and activation functions, all LSTM architectures have ex-
plicit memory cells for storing information for long periods
of time, along with weights for updating the memory cell,
retrieving it, or keeping it for the next time step. The
LSTM architecture used in our experiments is given by
the following equations [36], as implemented in TensorFlow
basic LSTM cell:

sigm

sigm hffl
- 81gm T2n,4n (hi_l
tanh
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hl = 0 ® tanh(c})

Q O & =.
|

where sigm is the sigmoid function, sigm and tanh are
applied element-wise, i, f, 0, ¢, h are the input gate, forget
gate, output gate, cell activation vector and hidden vectors,
respectively. In this work, we assume the length of sequence
is known a-priori and hence use single layer LSTM with
static RNN cells.



4. EASE dataset

In this section, we present details of the data used for our
analysis of mood-aware engagement prediction. The dataset
we use is called EASE (Engagement Arousal Self-Efficacy)
[15] 1.

SESSION 1
MODULE 1 MODULE 2
Number Number
Task Nur!1ber Number of of Self Task Nur.nber Number of of Self-
of Videos  Frames of Videos  Frames
Reports Reports
Trigger Task
followed by Trigger 52 806855 166 |Relaxation 52 1579927 122
Relaxation Task
Relaxation Task
followed by  |Relaxation 43 1391803 91 Trigger 43 590953 98
Trigger Task
SESSION 2
MODULE 1 MODULE 2
Number Number of Number Number Number of Number
Task ) of Self Task . of Self
of Videos  Frames of Videos  Frames
Reports Reports
Trigger Task
followed by Trigger 33 454510 94 |Relaxation 33 1553409 63
Relaxation Task
Relaxation Task
followed by |Relaxation 47 1139996 105 Trigger a7 544298 149
Trigger Task

Figure 2: Information about participants and the distribution of
modules taken by them in each session considered for mood
analysis in this work. Participants consisted of total 110 subjects
with 88 Female, 17 Male, 5 unspecified in the age group of 18-79
years, with 80% being under the age of 46.

Dataset details: The web-intervention used to collect
the data was based on the findings of Social Cognitive
Theory [41] and consisted of subjects undergoing six tasks
(modules) namely: social-support, self-talk, relaxation, un-
helpful coping, professional help and triggers. The broader
study was divided into three sessions/visits in the form of
a Randomized Control Trial (RCT). Each participant was
assigned two out of the six modules in each visit. The
first two visits were restricted to “Relaxation” (RX) and
“Triggers” (TR) modules only and in the third visit the
participants were free to choose from the remaining four
modules. Each visit lasted for approx. 30 minutes - 1.5
hours. In the first visit, subjects were randomly allocated
Relaxation or Triggers as the first module and a reverse
order during the second visit and second module. At the
beginning of each visit, the subjects listened to a neutral
introductory video. During these sessions, a LogiTech we-
bcam with a resolution of 640x480 at 30 fps was placed
on top of the monitor recording the participants face video
along with audio. Physiological data was also recorded for
the entire session. The participants could freely interact
with the trauma recovery website, and their interactions
were recorded in the form of Picture in Picture video using
a Camtasia recorder (with screen and webcam recording
simultaneously). During the module, participants provided
self-reports about their engagement level, Profile of Mood
States before the module (pre-POMS) and after the module

1. We have been granted IRB approval to release unidentifiable data
for research purposes, including AUs extracted from facial videos and
the associated POMS data. Since identifiable data cannot be released, we
cannot display raw video frames from the dataset in this paper.

(post-POMS). Although the EASE data is significantly rich
in terms of its multi-modal nature, for this work we focus
our attention primarily on facial video data captured by
webcam placed on monitor, POMS responses provided by
the participants and the engagement self-reports.

As mentioned earlier, each participant came in for three
sessions/visits. The first two (controlled) visits are used for
experiments in this paper. In each visit, the subjects undergo
relaxation and trigger tasks. The relaxation module presents
the user with video demonstrations of various exercises
like breathing, muscle relaxation, etc. The triggers mod-
ule presents educational material to the user about trauma
symptoms and prevention. Since few subjects dropped out
during the study, for the first session, we have data from 95
subjects and from the second session we use data from 80
subjects. Some of the collected data was unusable due to
either system issues, data corruption or lack of engagement
self-reports.

Profile of Mood States (POMS): The Profiles of Mood
States-Short Form (POMS-SF) [13], [14] are used to mea-
sure reactive changes in the mood of a person. It is a list
of 37 items related to depression, vigor, tension, anger,
fatigue, and confusion. In EASE data the TMD score was
calculated from a 24-point questionnaire instead of 37 to
reduce the cognitive load of trauma subjects. Participants
rate items for how they feel at the moment on a 5-point scale,
ranging from 1 (not at all) to 5 (extremely). Each question
corresponds to a specific sub-scale of mood, e.g., tension:
negative sentiment (5 questions), depression: negative senti-
ment (6 questions), anger: negative sentiment (5 questions),
fatigue: negative sentiment (2 questions), confusion: nega-
tive sentiment (2 questions) and vigor: positive sentiment (4
questions). The final TMD (Total Mood Disturbance) level is
computed as difference of sum of negative n(x) and positive
p(X) sentiments:

TMD = Z

T Enegative sentiments

n(z) — >

T Epositive sentiment

p(z) (1)

This self-report is given to the subjects at baseline and
immediately before and after each module. Each video
consisted of mood states report before and after the module
(pre-POMS report and post-POMS report). Participants also
provided self-reports about their engagement level approx.
three times (start, middle, and end of the segment) during
each session. Figure 3 shows the changes in mood at the
TMD and sub-scale level in the EASE dataset. Greater TMD
scores are indicate of subjects with more unstable mode
profiles and lower scores indicate stable mood profiles.

5. Experiments

We now describe the AU computation procedure to
extract intermediate feature representation, followed by the
methodology for sequence learning using LSTMs and the
various LSTM mood/engagement models. Lastly, we elab-
orate the data used for training and testing.
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Figure 3: Changes in subject moods pre/post each module in each
session. We tested each change for significant with a two-sided
paired t-test. The legend, a * means that scale/subscale showed a
statistically significant decrease change at the .01 level. Because
of the significant changes during each module one cannot compute
TMD once and reuse it across the treatment — we need automated
mood estimation.

Facial action units extraction: As noted in earlier
section 4, the collected dataset consisted of a large number
of facial video and engagement self-reports. While there are
number of software available for extracting facial landmark
points and facial action units (e.g. [25], [26]) we use the
recent work on OpenFace [28] proposed by Baltrusaitis et
al.. Tt is an open-source tool which has shown state-of-
the-art performance on multiple tasks such as head-pose,
eye-gaze, and AU detection. For our work, we primarily
focus on facial action units. The AUs extracted consisted
of intensity based and presence based AUs. The list of
AUs used in this paper are as follows: Inner Brow Raiser,
Outer Brow Raiser, Brow Lowerer (intensity), Upper Lid
Raiser, Cheek Raiser, Nose Wrinkler, Upper Lip Raiser, Lip
Corner Puller (intensity), Dimpler, Lip Corner Depressor
(intensity), Chin Raiser, Lip Stretched, Lips Part, Jaw Drop,
Brow Lowerer (presence), Lip Corner Puller (presence), Lip
Corner Depressor (presence), Lip Tightner, Lip Suck, Blink.

LSTM Engagement and Mood Models: In this work,
we model four variants of engagement prediction using the
same basic LSTM cell which are as follows (each model is
a single layered LSTM):

1) Engagement multi-class classifier
We optimize the LSTM to predict a discrete set
of engagement levels 1 (very disengaged) through
5 (very engaged), by minimizing the cross-entropy
loss of the predicted and actual class after applying
softmax function. By doing this, each engagement
level is treated as a separate and mutually exclusive
output. The baseline from [15] was recomputed to
include the subjects that had POMS data available.

2) Mood-aware engagement prediction : POMS-SR
We precondition the basic engagement multi-class
LSTM with TMD scores obtained using self-
reports. We max normalize the TMD scores during
training and propagate the normalized score along

Trauma Patient Facial Video Segment

w30 secs; 1 30secs; Data for Visual POMS
Data for regression
31

E

Post-POMS
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Pre-POMS
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Engagement Responses

Figure 4: Video segment selection: The process of selecting video
segments from a particular video session for training POMS models
and engagement models is shown in above figure. Each video
segment consists of POMS measurement at the start and end of the
session. For training POMS regression models POMS-TMD and
POMS-TMDS, we consider two 30 seconds segments from pre-
POMS and post-POMS measurement. Engagement self-reports are
collected at approx. 3 time-points during the module. Training data
for engagement prediction consists of 30 second segments prior to
each engagement self-report. From each of these frames (either for
POMS or engagement), AUs are extracted from video frames and
used as intermediate feature representation for training LSTMs

with the intermediate AU representations by adding
the normalized score to the AU representation. The
model is a reproduction of our prior work [15].

3) Mood Disturbance predictor : POMS-TMD
POMS-TMD is a single-output regressor. This
LSTM model is optimized to predict continu-
ous POMS-TMD scores in range 0-24, by back-
propagating the L2-regularization loss. Using L2-
regularization, we penalize the outliers heavily by
adding a penalty on the norm of the weights to the
loss.

4)  Mood Sub-scale predictor : POMS-TMDS
The POMS sub-scale LSTM (POMS-TMDS) is a
multi-output regressor. It is optimized to predict six
sub scales of tension, vigor, depression, anger, con-
fusion and fatigue each in range 1-5, by computing
the L2-regularization loss and an Adam optimizer
with a learning rate of 0.1 trained over 15 epochs,
see Figure 5 for a choice of epoch-size. The esti-
mated sub-scale values are then used to compute a
TMD score estimate.

Cross-Validation and Train-test pipeline: Our multi-
class engagement model consists of a 20 fold validation with
420 segments of 30 seconds each in training set and 46
segments of 30 seconds each in testing set for Trigger (TR)
module. Similarly, in Relaxation (RX) module, our training
set consists of 313 segments of 30 seconds each and 35 seg-
ments of 30 seconds each in testing module. Each segment
had a self-reported engagement score as ground-truth on a
scale of 1-5. This led to the availability of AUs from 378K
frames for training LSTM for engagement prediction for
TR module and AUs from 282K frames for training in RX
module. Mood-aware contextual engagement LSTMs were



trained based on context. Our automated mood LSTM’s
i.e. POMS-TMD and POMS-TMDS had 600 segments in
training set and 67 segments in test set. As shown in Figure
4 two 30 second segments were selected with same POMS
label to increase the effective size of training samples. Each
segment was accompanied by POMS self report collected
before/after the module as shown in Figure 4. TMD scores
from self reports were used to condition the AUs and form
the POMS-SR baseline. We formulate the problem of au-
tomated mood prediction as a sequence based single-output
(POMS-TMD) or multi-output (POMS-TMDS) regression
and train LSTM to predict a TMD score or individual
mood clusters. Finally, we used automated mood prediction
pipeline to compute TMD scores from both POMS-TMD
and POMS-TMDS models. These automated TMD scores
were used to pre-condition AUs and LSTMs were trained
for engagement prediction. Convergence plot for one fold of
data on the POMS-TMD LSTM is shown in Figure 5. It took
approximately 5-7 epochs for both TR and RX contextual
models to stabilize test loss. After 60 epochs the model starts
overfitting, therefore, we selected 15 epochs as a constant
for all cross-validation model evaluations irrespective of the
context.
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Figure 5: Convergence Plot: The above figure shows L2 loss for
training LSTM model for Mood Prediction as a function of Epochs.
It can be observed that it takes approximately 50-60 epochs for
train and test losses to converge for both RX and TR modules.
After the convergence point, the model is prone to over-fitting.

6. Results and Evaluation

In this section, we discuss in detail the results obtained
for engagement prediction across variety of tasks and its
task specificity. The results are summarized in Table 1.

We train separate contextual LSTMs for each visual
model (RX and TR) i.e. engagement predictions, POMS-
TMD and POMS-TMDS. LSTMs trained with only AUs
from the engagement segments serve as baseline for all
predictions. We obtain 48.55 + 17.7 % average prediction

TABLE 1: The first row shows engagement prediction results
without mood conditioning. The second row represents mood pre-
conditioning performed with POMS self reports for engagement
prediction. The third and fourth row show engagement prediction
accuracy with mood conditioning performed POMS-TMD esti-
mates from temporal deep learning based mood prediction. We
note that the performance of engagement predictions can be im-
proved by pre-conditioning with POMS self-report data. Accuracy
is further enhanced by pre-conditioning with visual POMS-TMD
estimates, suggesting effectiveness of automated mood prediction.
The performance numbers are obtained using 20-fold cross valida-
tion, with accuracy along with standard deviation reported in the
above table.

Trigger Relaxation

Engagement-baseline 48.55 £ 17.7 % 42.04 + 11.7 %

Engagement-Mood Aware

52.57 £ 17.2% 43.88 £ 11.9 %

POMS-SR

Engagement-Automated MA

POMS-TMD 54.04 4+ 18.14 % | 46.14 £ 1438 %
Engagement-Automated MA

POMS-TMDS 55.54 + 1843 % | 4542 4+ 12.99 %

accuracy across 20-folds on TR module and 42.04 4+ 11.7
% average prediction accuracy for RX module (margins of
error correspond to standard deviation computed over 20-
folds). We noticed significant improvements in performance
for TR module in a 2-sided tailed paired t-test (p=.07)
with average prediction accuracy of 52.57 + 17.21% for
POMS-SR, whereas RX accuracy increased to 43.88 =+
11.9% but was not statistically different (p=.26), consistent
with the findings in [15]. Using the visual estimations from
POMS-TMD regressor increased engagement accuracy sig-
nificantly for TR at p=.05 level when compared to POMS-
SR, highlighting the effect of using visual POMS rather
than self-reports. On the other hand, for RX although the
visual predictors of POMS-TMD and POMS-TMDS show
improvements in accuracy from baseline 46.14 £+ 14.3 %
and 44.42 4+ 12.9 %, there is statistically weak evidence at
p=.19 when evaluated with POMS-SR.

While evaluating, POMS-TMD regressor obtained
0.03673 average Mean Squared Error (MSE) with 0.0153
standard deviation in mood prediction for TR module and
0.03633 average MSE with 0.01227 standard deviation in
mood prediction for RX module using the POMS-TMDS
predictor. Average MSE and standard deviation for mood
prediction were computed over 10-fold cross validation.
However, evaluating the performance of visual mood-aware
regressors on a standalone basis is not required, since the
visual regressors surpass the POMS-SR. However, for com-
pleteness, the POMS-TMD and POMS-TMDS results are
shown in Figure 6 alongwith the actual scores from self-
reported POMS data. Moreover, the statistically insignificant
results in RX could be attributed to the significant changes
in mood states during the task of RX vs TR, analyzed in
Figure3. Such significant changes in mood-states during a
task, strongly suggest the need to build continuous predictors
of mood states from video in order to monitor the users
during an intervention.
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Figure 6: Automated Mood Predictors: This figure shows the
POMS-TMD and POMS-TMDS values for Relaxation as well as
Triggers modules. The subplots on the left show the Actual TMD
and sub-scale values from subject self-reports and the subplots
on the right show the predicted TMD and sub-scale values. Each
subplot shows the mood-scores on the y-axis and the mood-
type on the x-axis. Each boxplot shows the mean (green line),
median (orange line), and the inter-quartile range i.e. upper (75th
percentile) and lower (25th percentile) lines of the box. Notice,
that even though the predicted values do not predict over the
full dynamic range of mood-scores, the mean of the actual and
predicted POMS is similar at TMD and sub-scale levels.

7. Conclusion

In this work we presented a method for automated
detection of total mood disturbance and mood-subscale pre-
diction from facial action units and LSTMs. Our experi-
ments show that mood prediction using visual estimates
of POMS-TMD and POMS-TMDS performs better or at-
par with self-reported TMD. We used the detected mood
to aid engagement prediction models. The presented mood-
aware engagement prediction models outperformed baseline
engagement prediction model that relies only on video data.
We evaluated the proposed method on large scale dataset
collected from subjects during web-intervention for trauma

recovery. However, in this work, we considered a singular
automated mood-model unlike the contextual engagement
models. Future work may explore the possibilities of con-
textual mood. We also used LSTM’s in this work which
are highly parametric models and require extensive opti-
mization. In this work we optimized basic parameters like
number of epochs. Next obvious step is to fine-tune other
hyper-parameters for enhanced accuracy.

Beyond psychological studies, automated mood predic-
tion provides multiple applications in other areas as well.
In human robot interaction [22], mood assessment can lead
to adapting robot behavior based on subjects affective state.
In the domain of multi-player games [42], one can start
addressing questions like do a player’s actions reveal a
friendly/aggressive mood towards the other players? Can we
use the player’s actions to predict subsequent actions? In
domain of computer-aided instruction [20], understanding
mood and engagement in automated and scalable way can
help devise better learning tools or personalized instruc-
tion mechanisms. In workplaces, understanding performance
during job-interview, analyzing stress of employees, as-
sessing performance of call center employees during long
conversations can be significantly improved by automated
mood and engagement prediction methods. In the domain
of computational Advertising [43], automated mood-aware
engagement prediction methods can help create more so-
phisticated tools to better align advertising needs of users
and content creators.

There are multiple implications of the proposed work.
Mood and its relationship with other cognitive abilities has
been widely studied in psychology literature. Collecting
questionnaires from subjects is cumbersome process and in
many cases like trauma recovery, poses additional burden
on the subjects. Automated mood prediction using facial
video data provides a scalable platform to study wide range
of behavioral tasks and opens up multiple opportunities in
the domains of trauma recovery, elderly care, treating mood
disorders and other rehabilitation. In the domain of web-
intervention, automated mood and engagement prediction
provides a mechanism to build adaptive evidence-based
treatment [2], [44], [45].
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