
+

CUDA Assignment, Code Examples
and Scaling your App
Abhijit Bendale (abendale@vast.uccs.edu)
04/08/2014

+
Today’s Agenda

n  Discussion on CUDA Assignment

n  Code example
n  Detailed look at multiple examples from CUDA SDK

n  Scaling up your application
n  Amazon EC2, Amazon S3, Auto-Scale

n  Map-Reduce, Apache Hadoop

+
CUDA Assignment:
Implement Canny Edge Detection

Original Image Canny Edge Detection

+
Steps for Canny Edge Detection:
Noise Reduction

Noise Reduction

A = Image

+
Sobel Filter

Gradient in X direction Gradient in Y direction

Round up angles to (0, 45, 90, 135 degrees angle)

+
Non-Max Supression

Angle = 90
Check top/bottom
gradients. In this
case 7 is greater.
Hence an edge

Angle

Gradient
Value

Angle = 90
Check top/bottom
gradients. In this
case 5 is not greater than top/bottom
Hence not an edge

+
E.g. output of Non-Max Suppression

+
Hysteresis (Double) Thresholding

Use high and low threshold to determine ideal thickness
for edge lines. This is a bit empirical process. It is possible
that you wont be able to perform high level of parallelization
for this step. Give it a try.

+
Code base given to you

n  Computation of Sobel Edge Filter

n  Files
n  SobelFilter.cpp à overall I/O is handled here
n  SobelFilter_kernels.cu à Splitting of image in chunks and computing sobel filter on these

chunks
n  sobelFilter() is the global wrapper function
n  ComputeSobel() is where horizontal and vertical filters are defined. __device__ function.

Only convolution happens on GPU.
n  SobelShared() splits the image into multiple chunks

n  SobelFilter_kernels.h à header file
n  Makefile à library linking

n  Feel free to rename the files, create more files etc.

n  Note the different function scope identifiers: __global__, __device__,

n  Works on both Linux (command line: type “make”) and Windows (Visual Studio). Open
visual studio project file

+
About the code

n  Make sure you understand data types used:
n  Pixel is just an unsigned char (standard way of representing intensity

values in images)
n  Image is organized as texture: which is a 2D vector in C++

(texture<unsigned char, 2> tex)
n  setupTexture allocates memory in the device
n  Contains 2 ways to implement:

n  SobelTex() à Doesn’t use shared memory
n  SobelShared() à uses shared memory

n  Feel free to get inspiration from existing open-source canny
edge detection code.

n  Finally.. All the best for your assignment..!

+
Convolution Separable

Goal: Given a filter kernel, compute convolution with matrix/image

+
Separable Filters

1
2

1

-1 0 1

A separable filter can be divided into 2 consecutive filter
operations. They offer flexibility in implementation and reduce
mathematical complexity.

Apply row filter and column filter separately

Column Filter

Row Filter

+

n  main.cpp: main program, allocating host and device memory,
generating input data, issuing CUDA computations

n  convolutionSeparable.cu: CUDA convolution kernels
(contains row and column kernels)

n  convolutionSeparable_gold.cpp: reference CPU separable
convolution implementation, which is used to validate results
from CUDA

3_Imaging/convolutionSeparable

+
Seperable Convolution

for (int i = -1; i < iterations; i++)
 {

 convolutionRowsGPU(
 d_Buffer,
 d_Input,
 imageW,
 imageH
);

 convolutionColumnsGPU(
 d_Output,
 d_Buffer,
 imageW,
 imageH
);
 }

__global__ void convolutionRowsKernel(
 float *d_Dst,
 float *d_Src,
 int imageW,
 int imageH,
 int pitch
)

__global__ void convolutionColumnsKernel(
 float *d_Dst,
 float *d_Src,
 int imageW,
 int imageH,
 int pitch
)

Output of Rows

Becomes input of columns

convolutionSeparable.cu

3_Imaging/convolutionSeparable/main.cpp

+
Histogram

Goal: Given an image, compute its histogram

+
Parallelizing Histograms

n  Subdivision of input data array between execution threads

n  Processing of the sub-arrays by each dedicated execution
thread and sorting the result into a certain number of sub-
histograms

n  Merge sub histograms into a single histogram

+

+
Scaling up your application

+
Agenda

n  Amazon EC2: Scaling Computation, Auto-Scaling

n  Amazon S3: Scaling Storage

n  Maintaining Large Databases

n  Hadoop/MapReduce

n  Cassandra, Mongdob, Elasticsearch

n  Cost associated with Scaling

+
Amazon Web Services

EC2 S3 RDS

+
Amazon EC2
n  Amazon Elastic Compute Cloud provides compute capacity

in the cloud

n  EC2 allows users to rent virtual computers on which to run
their own computer applications.

n  EC2 allows scalable deployment of applications by providing
a web service and API

n  EC2 provides users control over geographic location for
better optimization

+

+
Launching EC2 instance

+

+
Amazon EC2 Web Console

+
Monitoring activity

+
Amazon EC2 API

+
Connecting to Amazon EC2
instance

+
Auto-Scaling

n  Automatically adapt
computing capacity to site
traffic

n  Schedule based (e.g. time
of the day), rule-based
(e.g. CPU utilization
thresholds) automated
scaling

home$as-create-or-update-trigger app-trigger –auto-scaling-group webapp
--namespace “AWS/EC2” –measure CPUUtilization --statistic Average
--lower-threshold 40 --upper-threshold 70 --lower-breach-increment=-1
--upper-breach-increment=1 --breach-duration 120

Use command line tools to automate the process. For e.g. if CPU utilization goes
above 70% for 120 secs, launch 1 machine. If goes below 40% for 120 secs, remove
one machine

+
Overview of dynamic Scaling

+
Amazon S3 : Scaling Storage

n  S3 = Simple Storage Service

n  Storage in EC2 is destroyed once the instance is terminated.
Amazon uses this infrastructure for its own websites

n  Data organized in the form of buckets. Accessed as
bucketname.s3.amazonaws.com

n  Allows unlimited storage: in the increments of 1GB to 5GB

n  Objects are stored and retrieved using a developer-assigned
key. Can be used along with Amazon EC2 compute instances

n  Objects can be made available to public by http or bittorrent
protocol

+ S3 Web Console

+
Pricing for Amazon S3

If you wanted to back up data from your computer, at 0.01$/GB it will
cost you around 5$/month for 500GB.

+
Advantages of Using S3

n  Scalability: The amount of storage and bandwidth you need
can scale as you like

n  Availability, speed, throughput, capacity and robustness is
not affected even if you gain 10k users overnight.

n  Leaves out lot of system administration overhead

n  Seamlessly integrates with other Amazon AWS tools. Could
also use it for backing up your data

Many well known website use this for their storage requirements

+
Amazon RDS: Scaling Databases

n  Distributed relational database service

n  Complex admin processes like patching software, backing
up databases are managed automatically

n  Can get started in minutes, instead of in days

n  Scaling storage and compute resources can be performed by
API calls

n  Support for MySQL, Microsoft SQL server, Oracale Database
and PostgreSQL

+ RDS Architecture

+
Amazon RDS Web Console

+ Other AWS Products

+
Infrastructure as a Service

Google Compute
 Engine

Red Hat

+
Hadoop, MapReduce ….

+
What is Hadoop?

n  A large scale distributed batch processing infrastructure

n  True power lies in its ability to scale to hundreds or
thousands of machines

n  Hadoop includes distributed file system which breaks in
input data and sends fractions of the original data to several
machines in your cluster

n  It includes a distributed file system which breaks up input
data and sends fractions of the original data to several
machines in your cluster

n  Similar to NFS but lot more efficient

+
Challenges at Large Scale

n  Data distributed over multiple machines
n  Increases probability of failure

n  Network failure, machine failure, router failure etc.

n  Drive failures, desynchronized clocks etc.

n  Synchronization between multiple machines remains biggest
challenge for distributed systems

n  For e.g. in a system with 100 machines, if 1 fails it should be
equivalent to loss of 1% of the work and not 100% of work

+
Hadoop Approach

n  Connect multiple computers together and efficiently process
large volumes of information by using commodity machines

n  A theoretical 1000-core CPU costs more than 1000 single CPU
machines of 250 quad-core machines.

n  Hadoop will tie smaller and more reasonably priced
machines together into a single cost-effective compute
cluster

n  Data is distributed to different nodes in the cluster instead of
a single NFS drive

+
Network File System (NFS)Approach

Large amount of input data

Store it on a huge disk that can be
accessed by all machines

Data loading step

Distributed System

Node 1 Node 2 Node N ..

+
Hadoop Data Approach

+
Data Management in Hadoop

n  Data is conceptually record-oriented in Hadoop.

n  Individual input files are broken into lines or into other
formats specific to application logic

n  Each node in the cluster processes subset of the record

n  Data is stored on local disks: thus reduces overhead on
network bandwidth and transfers

n  Moving computation to the data instead of moving data to
computation

+
MapReduce: Isolated Processes

n  Hadoop limits the amount of communication which can be
performed by the processes

n  Though this looks like limitation, it increases reliability of the
system.

n  Hadoop will not run just any program and distribute it across
cluster (just like GPUs)

n  Programs must be written to conform “MapReduce”
programming model

n  Records are processed in isolation by tasks called Mappers

n  The output of mappers is then brought together into second set
of tasks called Reducers, where results from different mappers
can be merged

+
MapReduce Model

+
MapReduce: Isolated Processes

n  Communication between nodes is implicit

n  Pieces of data are tagged with key names, which inform Hadoop how to
send related bits of information to common destination node

n  Hadoop internally manages all of the data transfer and cluster topology
issues.

n  Less message passing between nodes compared to MPI (Message
Passing Interface).

n  Offers flat scalability compared to MPI. In MPI there is significant
overhead for large scale systems. Have to manually engineer how
message passing between all the machines work.

n  Same code works for MBs of data and TBs of data. No overhead for
refactoring, I/O, node failure etc. Hadoop takes care of it.

