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SUPERVISED LEARNING 
¥ Goal: given <input x, output g(x)> pairs,  

learn a good approximation to g 
� Minimize number of errors on new x’s 

¥ Input: N labeled examples  
¥ Representation: descriptive features 

� These define the “feature space” 
¥ Learning a concept C from examples 

� Family car (vs. sports cars, etc.) 
� “A” student (vs. all other students) 
� Blockbuster movie (vs. all other movies) 

¥ (Also: classification, regression…) 
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SUPERVISED LEARNING: HIGH LEVEL EXAMPLES 
¥ Handwriting Recognition 

�  Input: data from pen motion 
� Output: letter of the alphabet 

¥ Disease Diagnosis 
�  Input: patient data (symptoms, lab test results) 
� Output: disease (or recommended therapy) 

¥ Face Recognition 
�  Input: bitmap picture of person’s face 
� Output: person’s name 

¥ Spam Filtering 
�  Input: email message 
� Output: “spam” or “not spam” 

n [Examples from Tom Dietterich] 
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ANOTHER APPLICATION 

¥  A credit card company receives thousands of 
applications for new cards. Each application contains 
information about an applicant,  

�  age  
�  Marital status 
�  annual salary 
�  outstanding debts 
�  credit rating 
�  etc.  

¥  Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved.  
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YET ANOTHER EXAMPLE APPLICATION 

¥  An emergency room in a hospital measures 17 
variables (e.g., blood pressure, age, etc) of newly 
admitted patients.  

¥  A decision is needed: whether to put a new patient 
in an intensive-care unit.  

¥  Due to the high cost of ICU, those patients who 
may survive less than a month are given higher 
priority.  

¥  Problem: to predict high-risk patients and 
discriminate them from low-risk patients.  
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MACHINE LEARNING AND OUR FOCUS 
¥  Like human learning from past experiences. 
¥  A computer does not have “experiences”. 
¥  A computer system learns from data, which 

represent some “past experiences” of an 
application domain.  

¥  ML focus: learn a target function that can be used to 
predict the values of a discrete class attribute, e.g., 
approve or not-approved, and high-risk or low risk.  

¥  The task is commonly called: Supervised learning, 
classification, or inductive learning.  
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THE DATA AND THE GOAL 

¥ Data: A set of data records (also called 
examples, instances or cases) described 
by 
�  k attributes: A1, A2, … Ak.  
�  a class: Each example is labelled with a pre-

defined class.  
¥ Goal: To learn a classification model from 

the data that can be used to predict the 
classes of new (future, or test) cases/
instances. 
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AN EXAMPLE: DATA (LOAN APPLICATION) 
Approved or not 
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AN EXAMPLE: THE LEARNING TASK 
¥  Learn a classification model from the data  
¥  Use the model to classify future loan applications 

into  
�  Yes (approved) and  
�  No (not approved) 

¥  What is the class for following case/instance? 
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SUPERVISED VS. UNSUPERVISED LEARNING 

¥ Supervised learning: classification is seen 
as supervised learning from examples.  
� Supervision: The data (observations, 

measurements, etc.) are labeled with pre-
defined classes. It is like that a “teacher” gives 
the classes (supervision).  

� Test data are classified into these classes too.  
¥ Unsupervised learning (clustering) 

� Class labels of the data are unknown 
� Given a set of data, the task is to establish the 

existence of classes or clusters in the data 
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SUPERVISED LEARNING PROCESS: TWO STEPS 

n  Learning (training): Learn a model using the 
training data 

n  Testing: Test the model using unseen test data 
to assess the model accuracy 

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy
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WHAT DO WE MEAN BY LEARNING? 

¥ Given  
� a data set D,  
� a task T, and  
� a performance measure M,  

 a computer system is said to learn from D 
to perform the task T if after learning the 
system’s performance on T improves as 
measured by M.  

¥ In other words, the learned model helps the 
system to perform T better as compared to 
no learning.  
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AN EXAMPLE 

¥ Data: Loan application data 
¥ Task: Predict whether a loan should be 

approved or not. 
¥ Performance measure: accuracy. 
No learning: classify all future applications 

(test data) to the majority class (i.e., Yes):  
  Accuracy = 9/15 = 60%. 

¥ We can do better than 60% with learning. 
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CAR FEATURE SPACE AND DATA SET 

    

! 

X = {x t,y t }t=1
N

! 

y =
1 if x is positive
0 if x is negative
" 
# 
$ 

!
"

#
$
%

&
=

2

1

x

x
x

Data Set 

Data Item 

Data Label 

n [Alpaydin 2004 © The MIT Press] 
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FAMILY CAR CONCEPT C 

( ) ( )2121   power engine   AND  price eepp !!!!

n [Alpaydin 2004 © The MIT Press] 
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HYPOTHESIS SPACE H 

¥ Includes all possible concepts of a certain form 
� All rectangles in the feature space 
� All polygons 
� All circles 
� All ellipses 
� … 

¥ Parameters define a specific hypothesis from H 
� Rectangle: 2 params per feature (min and max) 
� Polygon: f params per vertex (at least 3 vertices) 
� (Hyper-)Circle: f params (center) plus 1 (radius) 
� (Hyper-)Ellipse: f params (center) plus f (axes) 
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HYPOTHESIS H 
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VERSION SPACE: H CONSISTENT WITH X  

most specific hypothesis, S 

most general hypothesis, G 

h ∈ H, between S and G, 
are consistent with X  
(no errors) 
 

They make up the  

version space 

 

(Mitchell, 1997) 
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LEARNING MULTIPLE CLASSES 
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REGRESSION: PREDICT REAL VALUE (WITH NOISE) 
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FUNDAMENTAL ASSUMPTION OF LEARNING 

Assumption: The distribution of training 
examples is identical to the distribution of test 
examples (including future unseen 
examples).  

¥ In practice, this assumption is often violated 
to certain degree.  

¥ Strong violations will clearly result in poor 
classification accuracy.  

¥ To achieve good accuracy on the test data, 
training examples must be sufficiently 
representative of the test data.  
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ISSUES IN SUPERVISED LEARNING 
1.  Evaluation: how well does it perform? 
2.  Model Selection: complexity, noise, bias 
3.  Representation: which features to use? 
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ROAD MAP 

¥  Basic concepts 
¥  Evaluation of classifiers 
¥  Naïve Bayesian classification 
¥  Naïve Bayes for text classification 
¥  Support vector machines 
¥  Decision tree induction 
¥  K-nearest neighbor 
¥  Ensemble methods: Bagging and Boosting 
¥  Summary 



Bachelor of InnovationTM

University of Colorado Colorado Springs
Bachelor of InnovationTM

University of Colorado Colorado Springs

EVALUATING CLASSIFICATION METHODS 
¥  Predictive accuracy 

¥  Efficiency 
�  time to construct the model  
�  time to use the model 

¥  Robustness: handling noise and missing values 
¥  Scalability: efficiency in disk-resident databases  
¥  Interpretability:  

�  understandable and insight provided by the model 
¥  Compactness of the model: size of the tree, or the 

number of rules.  
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EVALUATION METHODS 
¥  Holdout set: The available data set D is divided into 

two disjoint subsets,  
�  the training set Dtrain (for learning a model) 
�  the test set Dtest (for testing the model) 

¥  Important: training set should not be used in testing 
and the test set should not be used in learning.  
�  Unseen test set provides a unbiased estimate of accuracy.  

¥  The test set is also called the holdout set. (the 
examples in the original data set D are all labeled 
with classes.)  

¥  This method is mainly used when the data set D is 
large.  
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EVALUATION METHODS (CONT…) 

¥  n-fold cross-validation: The available data is 
partitioned into n equal-size disjoint subsets.  

¥  Use each subset as the test set and combine the rest 
n-1 subsets as the training set to learn a classifier.  

¥  The procedure is run n times, which give n accuracies.  
¥  The final estimated accuracy of learning is the average 

of the n accuracies.  
¥  10-fold and 5-fold cross-validations are commonly 

used.   
¥  This method is used when the available data is not 

large.  
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EVALUATION METHODS (CONT…) 

¥ Leave-one-out cross-validation: This 
method is used when the data set is very 
small.  

¥ It is a special case of cross-validation 
¥ Each fold of the cross validation has only a 

single test example and all the rest of the 
data is used in training.  

¥ If the original data has m examples, this is 
m-fold cross-validation  
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EVALUATION METHODS (CONT…) 
¥ Validation set: the available data is divided into 

three subsets,  
�  a training set,  
�  a validation set and  
�  a test set.  

¥ A validation set is used frequently for estimating 
parameters in learning algorithms.  

¥  In such cases, the values that give the best 
accuracy on the validation set are used as the 
final parameter values.  

¥ Cross-validation can be used for parameter 
estimating as well.  
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CLASSIFICATION MEASURES 
¥  Accuracy is only one measure (error = 1-accuracy). 
¥  Accuracy is not suitable in some applications.  
¥  In text mining, we may only be interested in the 

documents of a particular topic, which are only a 
small portion of a big document collection.   

¥  In classification involving skewed or highly 
imbalanced data, e.g., network intrusion and financial 
fraud detections, we are interested only in the 
minority class.  
�  High accuracy does not mean any intrusion is detected.  
�  E.g., 1% intrusion. Achieve 99% accuracy by doing nothing.  

¥  The class of interest is commonly called the positive 
class, and the rest negative classes. 
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PRECISION AND RECALL MEASURES 
¥  Used in information retrieval and text classification.  
¥  We use a confusion matrix to introduce them.  
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PRECISION AND RECALL MEASURES (CONT…) 

n  Precision p is the number of correctly classified 
positive examples divided by the total number of 
examples that are classified as positive.  

n  Recall r is the number of correctly classified positive 
examples divided by the total number of actual 
positive examples in the test set.  

.       .
FNTP

TP r
FPTP

TPp
+

=
+

=
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AN EXAMPLE 

¥  This confusion matrix gives  
�  precision p = 100% and  
�  recall r = 1%  
 because we only classified one positive example correctly 
and no negative examples wrongly.  

¥  Note: precision and recall only measure 
classification on the positive class.  
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F1-VALUE (ALSO CALLED F1-SCORE) 

¥  It is hard to compare two classifiers using two measures. F1 
score combines precision and recall into one measure 

¥  The harmonic mean of two numbers tends to be closer to the 
smaller of the two.  

¥  For F1-value to be large, both p and r much be large.  
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ANOTHER EVALUATION METHOD:  
  SCORING AND RANKING 

¥ Scoring is related to classification. 
¥ We are interested in a single class (positive 

class), e.g., buyers class in a marketing 
database.  

¥ Instead of assigning each test instance a 
definite class, scoring assigns a probability 
estimate (PE) to indicate the likelihood that 
the example belongs to the positive class.  
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RANKING AND LIFT ANALYSIS 

¥ After each example is given a PE score, we can 
rank all examples according to their PEs.  

¥ We then divide the data into n (say 10) bins. A lift 
curve can be drawn according how many positive 
examples are in each bin. This is called lift 
analysis.  

¥ Classification systems can be used for scoring. 
Need to produce a probability estimate.  

�  E.g., in decision trees, we can use the confidence value at 
each leaf node as the score.  
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AN EXAMPLE 
¥ We want to send promotion materials to 

potential customers to sell a watch.  
¥ Each package cost $0.50 to send (material 

and postage).  
¥ If a watch is sold, we make $5 profit.  
¥ Suppose we have a large amount of past 

data for building a predictive/classification 
model. We also have a large list of 
potential customers. 

¥ How many packages should we send and 
who should we send to? 
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AN EXAMPLE 

¥ Assume that the test set has 10000 
instances. Out of this, 500 are positive 
cases.  

¥ After the classifier is built, we score each 
test instance. We then rank the test set, 
and divide the ranked test set into 10 bins. 
� Each bin has 1000 test instances.  
� Bin 1 has 210 actual positive instances 
� Bin 2 has 120 actual positive instances 
� Bin 3 has 60 actual positive instances 
� … 
� Bin 10 has 5 actual positive instances 
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LIFT CURVE 
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BAYESIAN CLASSIFICATION 

¥  Probabilistic view:  Supervised learning can naturally 
be studied from a probabilistic point of view.  

¥  Let A1 through Ak be attributes with discrete values. 
The class is C.  

¥  Given a test example d with observed attribute values 
a1 through ak.  

¥  Classification is basically to compute the following 
posteriori probability. The prediction is the class cj 
such that  

 is maximal 
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APPLY BAYES’ RULE 

n  Pr(C=cj) is the class prior probability: easy to 
estimate from the training data. 
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COMPUTING PROBABILITIES 
¥ The denominator P(A1=a1,...,Ak=ak) is 

irrelevant for decision making since it is the 
same for every class.  

¥ We only need P(A1=a1,...,Ak=ak | C=ci), 
which can be written as  

     Pr(A1=a1|A2=a2,...,Ak=ak, C=cj)* Pr(A2=a2,...,Ak=ak |C=cj) 

¥ Recursively, the second factor above can be 
written in the same way, and so on.  

¥ Now an assumption is needed.  
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CONDITIONAL INDEPENDENCE ASSUMPTION  

¥ All attributes are conditionally independent 
given the class C = cj.  

¥ Formally, we assume,  
        Pr(A1=a1 | A2=a2, ..., A|A|=a|A|, C=cj) = Pr(A1=a1 | C=cj)  

 and so on for A2 through A|A|. I.e.,  
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FINAL NAÏVE BAYESIAN CLASSIFIER 

¥ We are done! 
¥ How do we estimate P(Ai = ai| C=cj)? Easy!.  
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CLASSIFY A TEST INSTANCE 

¥ If we only need a decision on the most 
probable class for the test instance, we 
only need the numerator as its 
denominator is the same for every class.  

¥ Thus, given a test example, we compute 
the following to decide the most probable 
class for the test instance  
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AN EXAMPLE 

n  Compute all probabilities 
required for classification 
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AN EXAMPLE (CONT …) 

For C = t, we have  
 
 
For class C = f, we have 
 
 
 
C = t is more probable. t is the final class.  
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ADDITIONAL ISSUES  

¥ Numeric attributes: Naïve Bayesian 
learning assumes that all attributes are 
categorical. Numeric attributes need to be 
discretized. 

¥ Zero counts: An particular attribute value 
never occurs together with a class in the 
training set. We need smoothing. 
 

¥ Missing values: Ignored  
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ON NAÏVE BAYESIAN CLASSIFIER 
¥ Advantages:  

�  Easy to implement 
�  Can be Very efficient 
�  Good results obtained in many applications 

¥ Disadvantages 
�  Assumption: class conditional 

independence, therefore loss of accuracy 
when the assumption is seriously violated 
(those highly correlated data sets) 

�  Closed Set 
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TEXT CLASSIFICATION/CATEGORIZATION 

¥ Due to the rapid growth of online documents in 
organizations and on the Web, automated 
document classification has become an important 
problem.  

¥ Techniques discussed previously can be applied 
to text classification, but they are not as effective 
as the next three methods.  

¥ We first study a naïve Bayesian method 
specifically formulated for texts, which makes use 
of some text specific features.  

¥ However, the ideas are similar to the preceding 
method.  



Bachelor of InnovationTM

University of Colorado Colorado Springs
Bachelor of InnovationTM

University of Colorado Colorado Springs

PROBABILISTIC FRAMEWORK 
¥  Generative model: Each document is 

generated by a parametric distribution 
governed by a set of hidden parameters.  

¥  The generative model makes two 
assumptions 

�  The data (or the text documents) are 
generated by a mixture model,  

�  There is one-to-one correspondence between 
mixture components and document classes.  
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MIXTURE MODEL 

¥ A mixture model models the data with a 
number of statistical distributions.  
�  Intuitively, each distribution corresponds to a 

data cluster and the parameters of the 
distribution provide a description of the 
corresponding cluster.  

¥ Each distribution in a mixture model is also 
called a mixture component.  

¥ The distribution/component can be of any 
kind  
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AN EXAMPLE 

¥ The figure shows a plot of the probability 
density function of a 1-dimensional data set 
(with two classes) generated by  
� a mixture of two Gaussian distributions,  
� one per class, whose parameters (denoted by θi) 

are the mean (µi) and the standard deviation (σi), 
i.e., θi = (µi, σi).  

     class 1                                       class 2 
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MIXTURE MODEL (CONT …) 

¥ Let the number of mixture components (or 
distributions) in a mixture model be K.  

¥ Let the jth distribution have the parameters θj.  
¥ Let Θ be the set of parameters of all 

components, Θ = {ϕ1, ϕ2, …, ϕK, θ1, θ2, …, θK}, 
where ϕj is the mixture weight (or mixture 
probability) of the mixture component j and θj 
is the parameters of component j.  

¥ How does the model generate documents? 
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DOCUMENT GENERATION 
¥ Due to one-to-one correspondence, each class 

corresponds to a mixture component. The mixture 
weights are class prior probabilities, i.e., ϕj = Pr(cj|
Θ).  

¥ The mixture model generates each document di by: 
�  first selecting a mixture component (or class) according to 

class prior probabilities (i.e., mixture weights), ϕj = Pr(cj|Θ).  
�  then having this selected mixture component (cj) generate 

a document di according to its parameters, with distribution 
Pr(di|cj; Θ) or more precisely Pr(di|cj; θj).   
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MODEL COMPLEX DOCUMENTS 

¥ The naïve Bayesian classification treats 
each document as a “bag of words”.  The 
generative model makes the following 
further assumptions: 
� Words of a document are generated 

independently of context given the class label. 
The familiar naïve Bayes assumption used 
before.   

� The probability of a word is independent of its 
position in the document. The document length 
is chosen independent of its class.  
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MULTINOMIAL DISTRIBUTION  
¥ Many people then assume, each document 

can be regarded as generated by a 
multinomial distribution.  

¥ In other words, each document is drawn 
from a multinomial distribution of words 
with as many independent trials as the 
length of the document.  

¥ The words are from a given vocabulary V = 
{w1, w2, …, w|V|}.  
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USE PROBABILITY FUNCTION OF 
MULTINOMIAL DISTRIBUTION  

 where Nti is the number of times that word wt 
occurs in document di and  
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PARAMETER ESTIMATION  

¥  The parameters are estimated based on empirical 
counts.  

I 
¥  In order to handle 0 counts for infrequent occurring 

words that do not appear in the training set, but may 
appear in the test set, we need to smooth the 
probability, e.g.  Lidstone smoothing, 0 ≤ λ ≤ 1  
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PARAMETER ESTIMATION (CONT …) 

¥ Class prior probabilities, which are mixture 
weights ϕj, can be easily estimated using 
training data  
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CLASSIFICATION 
¥  Given a test document di, from Eq. (23) (27) and (28) 
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DISCUSSIONS 

¥ Most assumptions made by naïve 
Bayesian learning are violated to some 
degree in practice.  

¥ Despite such violations, researchers have 
shown that naïve Bayesian learning 
produces very accurate models.  
� The main problem is the close world and 

mixture model assumption. When this 
assumption is seriously violated, the 
classification performance can be poor. 

¥ Naïve Bayesian learning is very efficient.   
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ROAD MAP 

¥  Basic concepts 
¥  Evaluation of classifiers 
¥  Naïve Bayesian classification 
¥  Naïve Bayes for text classification 
¥  Support vector machines 
¥  Decision tree induction 
¥  K-nearest neighbor 
¥  Ensemble methods: Bagging and Boosting 
¥  Summary 
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INTRODUCTION 

¥  Support vector machines were invented by V. Vapnik 
and his co-workers in 1970s in Russia and became 
known to the West in 1992.  

¥  SVMs are linear classifiers that find a hyperplane to 
separate two class of data, positive and negative.  

¥  Kernel functions are used for nonlinear separation. 
¥  SVM not only has a rigorous theoretical foundation, 

but also performs classification more accurately than 
most other methods in applications, especially for 
high dimensional data.  

¥  It is perhaps the best classifier for text classification.  
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BASIC CONCEPTS 
¥  Let the set of training examples D be  
  {(x1, y1), (x2, y2), …, (xr, yr)},  
 where xi = (x1, x2, …, xn) is an input vector in a real-
valued space X ⊆ Rn and yi is its class label (output 
value), yi ∈ {1, -1}.  
 1: positive class and -1: negative class.  

¥  SVM finds a linear function of the form (w: weight 
vector)  
   f(x) = 〈w ⋅ x〉 + b  
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LINEAR SUPPORT VECTOR MACHINES  

x1 

x2 

=+1 
=-1 

Data: <xi,yi>, i=1,..,l 
xi ∈ Rd 

yi ∈ {-1,+1} 
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=-1 
=+1 

Data: <xi,yi>, i=1,..,l 
xi ∈ Rd 

yi ∈ {-1,+1} 
 

All hyperplanes in Rd are parameterize by a vector (w) and a constant b.  
Can be expressed as w•x+b=0 (remember the equation for a hyperplane  
from algebra!) 
Our aim is to find such a hyperplane  f(x)=sign(w•x+b), that  
correctly classify our data. 

n f(x) 

LINEAR SVM 2 
 Separating plane is also called 
 the decision boundary (surface). 
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d+ 
d- 

DEFINITIONS 
Define the hyperplane H such that: 
xi•w+b ≥ +1 when yi =+1  
xi•w+b ≤ -1 when yi =-1 

d+ = the shortest distance to the closest positive point 
d- = the shortest distance to the closest negative point 

The margin of a separating hyperplane is d+ + d-. 

H 

H1 and H2 are the planes: 
H1: xi•w+b = +1  
H2: xi•w+b = -1 
The points on the planes H1 and 
H2 are the Support Vectors 
 

H1 

H2 
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MAXIMIZING THE MARGIN 

d+ 
d- 

We want a classifier with as big margin as possible.  

Recall the distance from a point(x0,y0) to a line: 
Ax+By+c = 0 is |A x0 +B y0 +c|  /  sqrt(A2+B2) 

The distance between H and H1 is: 
|w•x+b|/||w||=1/||w|| 

The distance between H1 and H2 is: 2/||w|| 
In order to maximize the margin, we need to minimize ||w||. 
With the condition that there are no datapoints between H1 
and H2: 
       xi•w+b ≥ +1 when yi =+1  
       xi•w+b ≤ -1 when yi =-1         
Can be combined into yi(xi•w) ≥ 1  
 

H1 

H2 

H 
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LINEAR SVM: SEPARABLE CASE 
¥  Assume the data are linearly separable.  
¥  Consider a positive data point (x+, 1) and a negative 

(x-, -1) that are closest to the hyperplane  
  <w ⋅ x> + b = 0.  

¥  We define two parallel hyperplanes, H+ and H-, that 
pass through x+ and x- respectively. H+ and H- are 
also parallel to <w ⋅ x> + b = 0.  
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COMPUTE THE MARGIN 

¥  Now let us compute the distance between the two 
margin hyperplanes H+ and H-. Their distance is the 
margin (d+ + d- in the figure).  

¥  Recall from vector space in algebra that the 
(perpendicular) distance from a point xi to the 
hyperplane 〈w ⋅ x〉 + b = 0 is: 

  
where ||w|| is the norm of w,   

||||
||

w
xw bi +〉⋅〈

22
2

2
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(36) 

(37) 
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COMPUTE THE MARGIN (CONT …) 

¥  Let us compute d+.  
¥  Instead of computing the distance from x+ to the 

separating hyperplane 〈w ⋅ x〉 + b = 0, we pick up any 
point xs on 〈w ⋅ x〉 + b = 0 and compute the distance 
from xs to 〈w ⋅ x+〉 + b = 1 by applying the distance 
Eq. (36) and noticing 〈w ⋅ xs〉 + b = 0,  

||||
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||||
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ww
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A OPTIMIZATION PROBLEM! 
Definition (Linear SVM: separable case): Given a set of 

linearly separable training examples,  
  D = {(x1, y1), (x2, y2), …, (xr, yr)} 
 Learning is to solve the following constrained 
minimization problem,  

 
 
 
 
 
        summarizes 

 
 
 〈w ⋅ xi〉 + b ≥ 1     for yi = 1 
 〈w ⋅ xi〉 + b ≤ -1  for yi = -1. 

riby ii  ..., 2, 1,   ,1)(  :Subject to
2

   :Minimize

=≥+〉⋅〈

〉⋅〈

xw

ww

riby ii  ..., 2, 1,   ,1( =≥+〉⋅〈 xw

(40) 
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SOLVE THE CONSTRAINED MINIMIZATION 

¥ Standard Lagrangian method 

  
where αi ≥ 0 are the Lagrange multipliers. 

¥ Optimization theory says that an optimal 
solution to (41) must satisfy certain 
conditions, called Kuhn-Tucker 
conditions, which are necessary (but not 
sufficient) 

¥ Kuhn-Tucker conditions play a central role 
in constrained optimization.  
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KUHN-TUCKER CONDITIONS 

¥  Eq. (50) is the original set of constraints.  
¥  The complementarity condition (52) shows that only those 

data points on the margin hyperplanes (i.e., H+ and H-) can 
have αi > 0 since for them yi(〈w ⋅ xi〉 + b) – 1 = 0.  

¥  These points are called the support vectors, All the other 
parameters αi = 0. 
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SOLVE THE PROBLEM 

¥  In general, Kuhn-Tucker conditions are necessary for 
an optimal solution, but not sufficient.  

¥  However, for our minimization problem with a convex 
objective function and linear constraints, the Kuhn-
Tucker conditions are both necessary and sufficient 
for an optimal solution. 

¥  Solving the optimization problem is still a difficult task 
due to the inequality constraints.  

¥  However, the Lagrangian treatment of the convex 
optimization problem leads to an alternative dual 
formulation of the problem, which is easier to solve 
than the original problem (called the primal).  
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DUAL FORMULATION 

¥ From primal to a dual: Setting to zero the 
partial derivatives of the Lagrangian (41) 
with respect to the primal variables (i.e., 
w and b), and substituting the resulting 
relations back into the Lagrangian.  
�  I.e., substitute (48) and (49), into the original 

Lagrangian (41) to eliminate the primal 
variables  

(55) ,
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DUAL OPTIMIZATION PROLEM 

n  This dual formulation is called the Wolfe dual.  
n  For the convex objective function and linear constraints of 

the primal, it has the property that the maximum of LD 
occurs at the same values of w, b and αi, as the minimum 
of LP (the primal).  

n  Solving (56) requires numerical techniques and clever 
strategies, which are beyond our scope. 
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THE FINAL DECISION BOUNDARY 

After solving (56), we obtain the values for αi, which 
are used to compute the weight vector w and the bias 
b using Equations (48) and (52) respectively.  
The decision boundary 
 
 
Testing: Use (57). Given a test instance z,  
 
 
 
If (58) returns 1, then the test instance z is classified 
as positive; otherwise, it is classified as negative.  
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LINEAR SVM: NON-SEPARABLE CASE 
Linear separable case is the ideal situation.  
Real-life data may have noise or errors.  

Class label incorrect or randomness in the application 
domain.  

Recall in the separable case, the problem was 
 
 
 
 
 
With noisy data, the constraints may not be satisfied. 
Then, no solution! 

riby ii  ..., 2, 1,   ,1)(  :Subject to
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   :Minimize
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RELAX THE CONSTRAINTS  

To allow errors in data, we relax the margin 
constraints by introducing slack variables, ξi 
(≥ 0) as follows:  

  〈w ⋅ xi〉 + b ≥ 1 - ξi  for yi = 1 
  〈w ⋅ xi〉 + b ≤ -1 + ξi  for yi = -1. 

 
The new constraints: 

 Subject to: yi(〈w ⋅ xi〉 + b) ≥ 1 - ξi, i =1, …, r, 
      ξi ≥ 0,  i =1, 2, …, r. 
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GEOMETRIC INTERPRETATION 
Two error data points xa and xb (circled) in wrong 
regions  
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PENALIZE ERRORS IN OBJECTIVE FUNCTION 

We need to penalize the errors in the 
objective function.  
A natural way of doing it is to assign an extra 
cost for errors to change the objective 
function to  
 
 
k = 1 is commonly used, which has the 
advantage that neither ξi nor its Lagrangian 
multipliers appear in the dual formulation.  
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NEW OPTIMIZATION PROBLEM 

¥ This formulation is called the soft-margin 
SVM. The primal Lagrangian is 
 

    where αi, µi ≥ 0 are the Lagrange 
multipliers  

ri
riby

C

i

iii

r

i
i

 ..., 2, 1,   ,0                   
 ..., 2, 1,   ,1)(  :Subject to

2
   :Minimize

1

=≥

=−≥+〉⋅〈

+
〉⋅〈

∑
=

ξ

ξ

ξ

xw

ww
(61)  

∑∑∑
===

−+−+〉⋅〈−+〉⋅〈=
r

i
iiii

r

i
ii

r

i
iP byCL

111
]1)([

2
1

ξµξαξ xwww
(62) 



Bachelor of InnovationTM

University of Colorado Colorado Springs
Bachelor of InnovationTM

University of Colorado Colorado Springs

KUHN-TUCKER CONDITIONS  
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FROM PRIMAL TO DUAL 

As the linear separable case, we transform 
the primal to a dual by setting to zero the 
partial derivatives of the Lagrangian (62) 
with respect to the primal variables (i.e., w, 
b and ξi), and substituting the resulting 
relations back into the Lagrangian.  
I.e., we substitute Equations (63), (64) and 
(65) into the primal Lagrangian (62).  
From Equation (65), C - αi - µi = 0, we can 
deduce that αi ≤ C because µi ≥ 0.  
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DUAL  
¥  The dual of (61) is  

¥  Interestingly, ξi and its Lagrange multipliers µi are not 
in the dual. The objective function is identical to that 
for the separable case.  

¥  The only difference is the constraint αi ≤ C.  
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FIND PRIMAL VARIABLE VALUES 
¥  The dual problem (72) can be solved numerically.  
¥  The resulting αi values are then used to compute w 

and b. w is computed using Equation (63) and b is 
computed using the Kuhn-Tucker complementarity 
conditions (70) and (71).  

¥  Since no values for ξi, we need to get around it.  
�  From Equations (65), (70) and (71), we observe that if 0 < αi 

< C then both ξi = 0 and yi〈w ⋅ xi〉 + b – 1 + ξi = 0. Thus, we 
can use any training data point for which 0 < αi < C and 
Equation (69) (with ξi = 0) to compute b.  
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(65), (70) AND (71) IN FACT TELL US MORE  

¥  (74) shows a very important property of SVM.  
�  The solution is sparse in αi. Many training data points are 

outside the margin area and their αi’s in the solution are 0.  
�  Only those data points that are on the margin (i.e., yi(〈w ⋅ xi〉 + 

b) = 1, which are support vectors in the separable case), 
inside the margin (i.e., αi = C and yi(〈w ⋅ xi〉 + b) < 1), or errors 
are non-zero.  

�  Without this sparsity property, SVM would not be practical for 
large data sets.  
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THE FINAL DECISION BOUNDARY 

¥  The final decision boundary is (we note that many 
αi’s are 0) 

¥  The decision rule for classification (testing) is the 
same as the separable case, i.e.,  
   sign(〈w ⋅ x〉 + b).  

¥  Finally, we also need to determine the parameter C in 
the objective function. It is normally chosen through 
the use of a validation set or cross-validation. 
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PROBLEMS WITH LINEAR SVM 

n =-1 
n =+1 

What if the decision function is not a linear? 
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DIMENSIONAL LIFTING AND KERNEL TRICK 
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HOW TO DEAL WITH NONLINEAR SEPARATION? 
¥  The SVM formulations require linear separation.  
¥  Real-life data sets may need nonlinear separation.  
¥  To deal with nonlinear separation, the same 

formulation and techniques as for the linear case are 
still used.  

¥  We only transform the input data into another space 
(usually of a much higher dimension) so that  
�  a linear decision boundary can separate positive and 

negative examples in the transformed space,  
¥  The transformed space is called the feature space. 

The original data space is called the input space.  



Bachelor of InnovationTM

University of Colorado Colorado Springs
Bachelor of InnovationTM

University of Colorado Colorado Springs

SPACE TRANSFORMATION 

¥ The basic idea is to map the data in the 
input space X to a feature space F via a 
nonlinear mapping φ,  

¥ After the mapping, the original training data 
set {(x1, y1), (x2, y2), …, (xr, yr)} becomes:  

      {(φ(x1), y1), (φ(x2), y2), …, (φ(xr), yr)}  

)(
:

xx φ

φ


FX →

(76) 

(77) 
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GEOMETRIC INTERPRETATION 

n  In this example, the transformed space is 
also 2-D. But usually, the number of 
dimensions in the feature space is much 
higher than that in the input space 
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OPTIMIZATION PROBLEM IN (61) BECOMES  
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AN EXAMPLE SPACE TRANSFORMATION 

¥ Suppose our input space is 2-dimensional, 
and we choose the following transformation 
(mapping) from 2-D to 3-D:  

¥ The training example ((2, 3), -1) in the input 
space is transformed to the following in the 
feature space:  
  ((4, 9, 8.5), -1)  
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PROBLEM WITH EXPLICIT TRANSFORMATION 

¥ The potential problem with this explicit data 
transformation and then applying the linear SVM 
is that it may suffer from the curse of 
dimensionality.  

¥ The number of dimensions in the feature space 
can be huge with some useful transformations 
even with reasonable numbers of attributes in the 
input space.  

¥ This makes it computationally infeasible to 
handle. 

¥ Fortunately, explicit transformation is not needed.  
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KERNEL FUNCTIONS 

¥ We notice that in the dual formulation both  
�  the construction of the optimal hyperplane (79) in F and  
�  the evaluation of the corresponding decision function 

(80) 
only require dot products 〈φ(x) ⋅ φ(z)〉 and never the 

mapped vector φ(x) in its explicit form. This is a crucial 
point.  

¥  Thus, if we have a way to compute the dot product 〈φ
(x) ⋅ φ(z)〉 using the input vectors x and z directly,  
�  no need to know the feature vector φ(x) or even φ itself.  

¥  In SVM, this is done through the use of kernel 
functions, denoted by K,  
  K(x, z) = 〈φ(x) ⋅ φ(z)〉 

(82) 
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AN EXAMPLE KERNEL FUNCTION 
¥  Polynomial kernel  
  K(x, z) = 〈x ⋅ z〉d  

¥  Let us compute the kernel with degree d = 2 in a 2-
dimensional space: x = (x1, x2) and z = (z1, z2). 

¥  This shows that the kernel 〈x ⋅ z〉2 is a dot product in 
a transformed feature space   

(83) 
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KERNEL TRICK 

¥ The derivation in (84) is only for illustration 
purposes.  

¥ We do not need to find the mapping 
function.  

¥ We can simply apply the kernel function 
directly by  
� replace all the dot products 〈φ(x) ⋅ φ(z)〉 in (79) 

and (80) with the kernel function K(x, z) (e.g., 
the polynomial kernel 〈x ⋅ z〉d in (83)).  

¥ This strategy is called the kernel trick. 
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IS IT A KERNEL FUNCTION? 

¥ The question is: how do we know whether 
a function is a kernel without performing 
the derivation such as that in (84)? I.e,  
� How do we know that a kernel function is 

indeed a dot product in some feature space?  
¥ This question is answered by a theorem 

called the Mercer’s theorem, which we will 
not discuss here.  
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COMMONLY USED KERNELS 
¥  It is clear that the idea of kernel generalizes the dot 

product in the input space. This dot product is also a 
kernel with the feature map being the identity  
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LIBSVM AND PARAMETER C 
¥ LIBSVM: A Library for SVM  (callable from 

many languages). Liblinear faster for just 
linear SVMs (but not always as accurate) 

¥ The slack-related parameter C is important 
¥ C is very small: SVM only considers about 

maximizing the margin and the points can be 
on the wrong side of the plane.    

¥ C value is very large: SVM will want very 
small slack penalties to make sure that all 
data points in each group are separated 
correctly.  
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CHOOSING PARAMETER C  

n Source:    LIBSVM 



Bachelor of InnovationTM

University of Colorado Colorado Springs
Bachelor of InnovationTM

University of Colorado Colorado Springs

4 BASIC KERNEL TYPES  
¥ LIBSVM has implemented 4 basic kernel types: 

linear, polynomial, radial basis function, and 
sigmoid  
�   0 -- linear: u'*v 
�   1 -- polynomial: (gamma*u'*v + coef0)^degree 
�      2 -- radial basis function: exp(-gamma*|u-v|^2) 
�      3 -- sigmoid: tanh(gamma*u'*v + coef0) 

¥ Linear and RBF are by far the most common 
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OVERTRAINING/OVERFITTING 

=-1 
=+1 

A well known problem with machine learning methods is overtraining. 
This means that we have learned the training data very well, but  
we can not classify unseen examples correctly. 
 
Also NEVER EVER TRAIN or select parameters on the testing data!!!! 
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OVERTRAINING/OVERFITTING 2 

It can be shown that: The portion, n, of unseen data that will be 
missclassified is bounded by:  

 n ≤ Number of support vectors / number of training examples 

A measure of the risk of overtraining with SVM (there are also other 
measures).  

Ockham´s razor principle: Simpler system are better than more complex 
ones. 
In SVM case: fewer support vectors mean a simpler representation of the 
hyperplane. 
Example: Understanding a certain cancer if it can be described by one 
gene  
is easier than if we have to describe it with 5000. 
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SOME OTHER ISSUES IN SVM 

¥  SVM works only in a real-valued space. For a 
categorical attribute, we need to convert its 
categorical values to numeric values.  

¥  SVM does only two-class classification. For multi-
class problems, some strategies can be applied, e.g., 
one-against-rest, and error-correcting output coding.  

¥  The hyperplane produced by SVM is hard to 
understand by human users. The matter is made 
worse by kernels. Thus, SVM is commonly used in 
applications that do not required human 
understanding. 
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A CAUTIONARY EXAMPLE 

Image classification of tanks. 
Input data: Photos of own and enemy tanks. 
NN system Worked really good with the training set used. 
In reality it failed completely. 
Reason: Enemy tank photos from midday US tanks at dawn. 
The classifier really learned wrong distribution 
It recognize dusk from dawn!!!! 
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ROAD MAP 

¥  Basic concepts 
¥  Evaluation of classifiers 
¥  Naïve Bayesian classification 
¥  Naïve Bayes for text classification 
¥  Support vector machines 
¥  Decision tree induction 
¥  K-nearest neighbor 
¥  Ensemble methods: Bagging and Boosting 
¥  Summary 
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INTRODUCTION 

¥ Decision tree learning is one of the most 
widely used techniques for classification.  
�  Its classification accuracy is competitive with 

other methods, and  
�  it is very efficient.  

¥ The classification model is a tree, called 
decision tree.  

¥ C4.5 by Ross Quinlan is perhaps the best 
known system. It can be downloaded from 
the Web.  
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THE LOAN DATA (REPRODUCED) 
Approved or not 
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A DECISION TREE FROM THE LOAN DATA 

n  Decision nodes and leaf nodes (classes) 
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USE THE DECISION TREE 

No 
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IS THE DECISION TREE UNIQUE? 

n  No. Here is a simpler tree.  
n  We want smaller tree and accurate tree. 

n   Easy to understand and perform better.  

n  Finding the best tree is 
NP-hard. 

n  All current tree building 
algorithms are heuristic 
algorithms 
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FROM A DECISION TREE TO A SET OF RULES 

n  A decision tree can 
be converted to a 
set of rules 

n  Each path from the 
root to a leaf is a 
rule. 
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ALGORITHM FOR DECISION TREE LEARNING 
¥  Basic algorithm (a greedy divide-and-conquer algorithm) 

�  Assume attributes are categorical now (continuous attributes 
can be handled too) 

�  Tree is constructed in a top-down recursive manner 
�  At start, all the training examples are at the root 
�  Examples are partitioned recursively based on selected 

attributes 
�  Attributes are selected on the basis of an impurity function (e.g., 

information gain) 
¥  Conditions for stopping partitioning 

�  All examples for a given node belong to the same class 
�  There are no remaining attributes for further partitioning – 

majority class is the leaf 
�  There are no examples left 
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DECISION TREE LEARNING ALGORITHM 
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CHOOSE AN ATTRIBUTE TO PARTITION DATA  

¥ The key to building a decision tree - which 
attribute to choose in order to branch.  

¥ The objective is to reduce impurity or 
uncertainty in data as much as possible. 
�  A subset of data is pure if all instances belong 

to the same class.  
¥ The heuristic in C4.5 is to choose the 

attribute with the maximum Information Gain 
or Gain Ratio based on information theory. 
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THE LOAN DATA (REPRODUCED) 
Approved or not 
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TWO POSSIBLE ROOTS, WHICH IS BETTER? 

n  Fig. (B) seems to be better.  
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INFORMATION THEORY 

¥  Information theory provides a mathematical 
basis for measuring the information content.  

¥ To understand the notion of information, think 
about it as providing the answer to a question, 
for example, whether a coin will come up heads.  
�  If one already has a good guess about the answer, 

then the actual answer is less informative.  
�  If one already knows that the coin is rigged so that it 

will come with heads with probability 0.99, then a 
message (advanced information) about the actual 
outcome of a flip is worth less than it would be for a 
honest coin (50-50).  
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INFORMATION THEORY (CONT …) 

¥ For a fair (honest) coin, you have no 
information, and you are willing to pay more 
(say in terms of $) for advanced information - 
less you know, the more valuable the 
information.  

¥  Information theory uses this same intuition, 
but instead of measuring the value for 
information in dollars, it measures information 
contents in bits.  

¥ One bit of information is enough to answer a 
yes/no question about which one has no idea, 
such as the flip of a fair coin  
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INFORMATION THEORY: ENTROPY MEASURE 
¥  The entropy formula, 

 

¥  Pr(cj) is the probability of class cj in data set D  
¥  We use entropy as a measure of impurity or 

disorder of data set D. (Or, a measure of 
information in a tree) 
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ENTROPY MEASURE: LET US GET A FEELING 

n  As the data become purer and purer, the entropy value 
becomes smaller and smaller. This is useful to us! 
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INFORMATION GAIN 
¥  Given a set of examples D, we first compute its 

entropy: 

¥  If we make attribute Ai, with v values, the root of the 
current tree, this will partition D into v subsets D1, D2 
…, Dv . The expected entropy if Ai is used as the 
current root: 

∑
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INFORMATION GAIN (CONT …) 
¥  Information gained by selecting attribute Ai to 

branch or to partition the data is  

¥  We choose the attribute with the highest gain to 
branch/split the current tree.  

)()(),( DentropyDentropyADgain
iAi −=
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AN EXAMPLE 

Age Yes No entropy(Di)
young 2 3 0.971
middle 3 2 0.971
old 4 1 0.722

n  Own_house is the best 
choice for the root.  
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WE BUILD THE FINAL TREE 

n  We can use information gain ratio to evaluate the 
impurity as well (see the handout)  
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HANDLING CONTINUOUS ATTRIBUTES 

¥ Handle continuous attribute by splitting into 
two intervals (can be more) at each node.  

¥ How to find the best threshold to divide? 
� Use information gain or gain ratio again 
� Sort all the values of an continuous attribute in 

increasing order {v1, v2, …, vr},  
� One possible threshold between two adjacent 

values vi and vi+1. Try all possible thresholds 
and find the one that maximizes the gain (or 
gain ratio).  
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AN EXAMPLE IN A CONTINUOUS SPACE 
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AVOID OVERFITTING IN CLASSIFICATION 
¥ Overfitting:  A tree may overfit the training data  

�  Good accuracy on training data but poor on test data 
�  Symptoms: tree too deep and too many branches, some 

may reflect anomalies due to noise or outliers 
¥ Two approaches to avoid overfitting  

�  Pre-pruning: Halt tree construction early 
¤ Difficult to decide because we do not know what may 

happen subsequently if we keep growing the tree.  
�  Post-pruning: Remove branches or sub-trees from a “fully 

grown” tree. 
¤ This method is commonly used. C4.5 uses a statistical 

method to estimates the errors at each node for 
pruning.  

¤ A validation set may be used for pruning as well. 
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AN EXAMPLE 
Likely to overfit the data 
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OTHER ISSUES IN DECISION TREE LEARNING 
¥ From tree to rules, and rule pruning 
¥ Handling of miss values 
¥ Handing skewed distributions 
¥ Handling attributes and classes with 

different costs.  
¥ Attribute construction 
¥ Etc. 
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ROAD MAP 

¥  Basic concepts 
¥  Evaluation of classifiers 
¥  Naïve Bayesian classification 
¥  Naïve Bayes for text classification 
¥  Support vector machines 
¥  Decision tree induction 
¥  K-nearest neighbor 
¥  Ensemble methods: Bagging and Boosting 
¥  Summary 
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K-NEAREST NEIGHBOR CLASSIFICATION 
(KNN) 
¥ Unlike all the previous learning methods, 

kNN does not build model from the training 
data.  

¥ To classify a test instance d, define k-
neighborhood P as k nearest neighbors of d 

¥ Count number n of training instances in P 
that belong to class cj 

¥ Estimate Pr(cj|d) as n/k 
¥ No training is needed. Classification time is 

linear in training set size for each test case.  
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KNNALGORITHM 

n  k is usually chosen empirically via a validation 
set or cross-validation by trying a range of k 
values.  

n  Distance function is crucial, but depends on 
applications.  
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EXAMPLE: K=6 (6NN) 

Government 

Science 

Arts 

A new point  
Pr(science|   )? 
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DISCUSSIONS 
¥ kNN can deal with complex and arbitrary 

decision boundaries. 
¥ Despite its simplicity, researchers have 

shown that the classification accuracy of 
kNN can be quite strong and in many 
cases as accurate as those elaborated 
methods. 

¥ kNN is slow at the classification time 
¥ kNN does not produce an understandable 

model  
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ROAD MAP 

¥  Basic concepts 
¥  Evaluation of classifiers 
¥  Naïve Bayesian classification 
¥  Naïve Bayes for text classification 
¥  Support vector machines 
¥  Decision tree induction 
¥  K-nearest neighbor 
¥  Ensemble methods: Bagging and Boosting 
¥  Summary 
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COMBINING CLASSIFIERS 

¥ So far, we have only discussed individual 
classifiers, i.e., how to build them and use 
them. 

¥ Can we combine multiple classifiers to 
produce a better classifier? 

¥ Yes, sometimes 
¥ We discuss two main algorithms:  

�  Bagging 
�  Boosting 
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Bagging 

n  Breiman, 1996 

n  Bootstrap Aggregating = Bagging  
q  Application of bootstrap sampling 

n  Given: set D containing m training examples 

n  Create a sample S[i] of D by drawing m examples at 
random with replacement from D 

n  S[i] of size m: expected to leave out 0.37 of examples 
from D 
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Bagging (cont…) 

n  Training 
q  Create k bootstrap samples S[1], S[2], …, S[k] 

q  Build a distinct classifier on each S[i] to produce k 
classifiers, using the same learning algorithm. 

n  Testing 
q  Classify each new instance by voting of the k 

classifiers (equal weights) 
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BAGGING EXAMPLE 

Original 1 2 3 4 5 6 7 8 

Training set 1 2 7 8 3 7 6 3 1 

Training set 2 7 8 5 6 4 2 7 1 

Training set 3 3 6 2 7 5 6 2 2 

Training set 4 4 5 1 4 6 4 3 8 
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BAGGING (CONT …) 
¥ When does it help? 

�  When learner is unstable 
¤ Small change to training set causes large change in 

the output classifier 
¤ True for decision trees, neural networks; not true for 

k-nearest neighbor, naïve Bayesian, class 
association rules 

�  Experimentally, bagging can help substantially 
for unstable learners, may somewhat degrade 
results for stable learners 
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BOOSTING 

¥ A family of methods:  
�  We only study AdaBoost (Freund & Schapire, 1996) 

¥ Training 
�  Produce a sequence of classifiers (the same 

base learner) 
�  Each classifier is dependent on the previous 

one, and focuses on the previous one’s errors 
�  Examples that are incorrectly predicted in 

previous classifiers are given higher weights 
¥ Testing 

�  For a test case, the results of the series of 
classifiers are combined to determine the final 
class of the test case. 
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ADABOOST 

Weighted 
 training set 

(x1, y1, w1) 
(x2, y2, w2) 

 … 
(xn, yn, wn) 

Non-negative weights 
 sum to 1 

n  Build a classifier ht 
whose accuracy on 
training set > ½ 
(better than random) 

Change weights 

called a weaker classifier 
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ADABOOST ALGORITHM 
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BAGGING, BOOSTING AND C4.5 

C4.5’s mean error 
rate over the  
10 cross-
validation. 

 

Bagged C4.5 
vs. C4.5. 

 

Boosted C4.5     
vs. C4.5. 

 

Boosting vs. 
Bagging 
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DOES ADABOOST ALWAYS WORK? 

¥ The actual performance of boosting 
depends on the data and the base learner.  
�  It requires the base learner to be unstable as 

bagging. 
¥ Boosting seems to be susceptible to noise. 

�  When the number of outliners is very large, 
the emphasis placed on the hard examples 
can hurt the performance. 
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ROAD MAP 

¥ Basic concepts 
¥ Evaluation of classifiers 
¥ Naïve Bayesian classification 
¥ Naïve Bayes for text classification 
¥ Support vector machines 
¥ Decision tree induction 
¥ K-nearest neighbor 
¥ Summary 
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SUMMARY 

¥  Applications of supervised learning are in almost any 
field or domain.  

¥  We studied  but a few classification techniques. 
¥  There are still many other methods, e.g.,  

�  Bayesian networks 
�  Neural networks 
�  Genetic algorithms 
�  Fuzzy classification 
This large number of methods also show the importance of 

classification and its wide applicability.  
¥  It remains an active research area.  


