Introduction to Parallel Programming & CUDA

Abhijit Bendale
CS 4440/5440
03/04/2014
Textbook

Available on Nvidia’s website
Goals

• Learn how to program massively parallel processors and achieve
 – High performance
 – Functionality and maintainability
 – Scalability across future generations

• Acquire technical knowledge required to achieve above goals
 – Principles and patterns of parallel programming
 – Processor architecture features and constraints
 – Programming API, tools and techniques
Moore’s Law (paraphrased)

“The number of transistors on an integrated circuit doubles every two years.”
– Gordon E. Moore
Moore’s Law

- The most economic number of components in an IC will double every year
- Historically – CPUs get faster
 → Hardware reaching frequency limitations
- Now – CPUs get wider
Parallel Computing

- Rather than expecting CPUs to get twice as fast, expect to have twice as many!
- Parallel processing for the masses
- Unfortunately: Parallel programming is hard.

→ Algorithms and Data Structures must be fundamentally redesigned

slide by Matthew Bolitho
Serial Performance Scaling is Over

- **Cannot** continue to scale processor frequencies
 - no 10 GHz chips

- **Cannot** continue to increase power consumption
 - can’t melt chip

- Can continue to increase transistor density
 - as per Moore’s Law
How to Use Transistors?

• Instruction-level parallelism
 – out-of-order execution, speculation, …
 – vanishing opportunities in power-constrained world

• Data-level parallelism
 – vector units, SIMD execution, …
 – increasing … SSE, AVX, Cell SPE, Clearspeed, GPU

• Thread-level parallelism
 – increasing … multithreading, multicore, manycore
 – Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, …
Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Computation: TFLOPs vs. 100 GFLOPs

FLOPS: Floating point operation per second = cores x clock x FLOPs/cycle

- e.g. 4 FLOPs/Cycle i.e. 2.5 GHz processor has theoretical performance of 10 Billion FLOPS
 i.e. 10 GFlops
Why Massively Parallel Processing?

- A quiet revolution and potential build-up
 - Bandwidth: ~10x

- GPU in every PC – massive volume & potential impact
The “New” Moore’s Law

• Computers no longer get faster, just wider

• You *must* re-think your algorithms to be parallel!

• Data-parallel computing is most scalable solution
 – Otherwise: refactor code for 2 cores
 – You will always have more data than cores – build the computation around the data
Enter the GPU

- Massive economies of scale
- Massively parallel
GPUs are REALLY fast

3D Filterbank Convolution

Matlab
- Performance (gflops): 0.3
- Development Time (hours): 0.5

C/SSE
- Performance (gflops): 9.0
- Development Time (hours): 10.0

PS3
- Performance (gflops): 30.0
- Development Time (hours): 110.0

GT200
- Performance (gflops): 10.0
- Development Time (hours): 330.0

Nicolas Pinto, James DiCarlo, David Cox (MIT, Harvard)
GPUs are Fast!

8x Higher Linpack

CPU Server: 2x Intel Xeon X5550 (Nehalem) 2.66 GHz, 48 GB memory, $7K, 0.55 kw
GPU-CPU 1U Server: 2x Tesla C2050 + 2x Intel Xeon X5550, 48 GB memory, $11K, 1.0 kw
World’s Fastest MD Simulation

Sustained Performance of 1.87 Petaflops/s
Institute of Process Engineering (IPE)
Chinese Academy of Sciences (CAS)

MD Simulation for Crystalline Silicon

Used all 7168 Tesla GPUs on Tianhe-1A GPU Supercomputer
World’s Greenest Petaflop Supercomputer

Tsubame 2.0
Tokyo Institute of Technology

- 1.19 Petaflops
- 4,224 Tesla M2050 GPUs
Increasing Number of Professional CUDA Applications

Available Now

Tools & Libraries
- CUDA C/C++
- NVIDIA NPP
- Thrust C++
- pyCUDA
- NVIDIA Video Libraries
- R-Stream Reservoir Labs
- PBSWorks
- MOAB Adaptive Comp
- TotalView Debugger

Oil & Gas
- Headwave Suite
- OpenGeo Solns
- GeoStar Seismic
- Paradigm SKUA
- VSG
- VSG GeoDepth RTM
- VSG Avizo
- Paradigm RTM Solver
- Paradigm GeoDepth RTM
- VSG RTM

Numerical Analytics
- LabVIEW Libraries
- AccelerEyes
- Jacket: MATLAB
- MATLAB
- Mathematica

Finance
- NAG
- Numerix
- SciComp
- Aquimin
- Hanweck Volera
- Numerix CounterpartyRisk
- SciFinance
- AlphaVision
- Options Analysis

Other
- Siemens 4D Ultrasound
- Digisens CT
- Schrodinger Core Hopping
- Useful Prog Medical Imag
- Manifold GIS
- MAVTech Mach Vision
- Dalsa Mach Vision
- WRF Weather

Future

- Parallel Nsight Vis Studio IDE
- PGI Fortran
- Bright Cluster Manager
- CAPS HMPP
- Torque Adaptive Comp
- TotalView Debugger
- Allinea DDT Debugger
- GPU Packages For R Stats Pkg
- Platform LSF Cluster Mgr
- TauCUDA Perf Tools
- PGI CUDA-X86
- GPU.net
- Schlumberger Petrel
- Schlumberger VoxelGeo

Available

- OpenSEIS
- GeoStar Seismic
- VSG
- VSG GeoDepth RTM
- VSG RTM
- VSG Avizo
- VSG Pro 2010

Announced

- Magma
- HDX
- Education
- GTC
- CUDA
- Tesla
- NVIDIA
- CUDA
- C/C++
Why so fast?

- Designed for math-intensive, parallel problems:

- More transistors dedicated to ALU than flow control and data cache

slide by Matthew Bolitho
Is it free?

- What are the consequences?
- Program must be more predictable:
 - Data access coherency
 - Program flow

Slide by Matthew Bolitho
CPU vs. GPU

- **CPU**
 - Really fast caches (great for data reuse)
 - Fine branching granularity
 - Lots of different processes/threads
 - High performance on a single thread of execution

- **GPU**
 - Lots of math units
 - Fast access to onboard memory
 - Run a program on each fragment/vertex
 - High throughput on parallel tasks

- CPUs are great for *task* parallelism
- GPUs are great for *data* parallelism
Task vs. Data parallelism

- **Task parallel**
 - Independent processes with little communication
 - Easy to use
 - “Free” on modern operating systems with SMP

- **Data parallel**
 - Lots of data on which the same computation is being executed
 - No dependencies between data elements in each step in the computation
 - Can saturate many ALUs
 - But often requires redesign of traditional algorithms

slide by Mike Houston
The Importance of Data Parallelism for GPUs

- GPUs are designed for highly parallel tasks like rendering
- GPUs process independent vertices and fragments
 - Temporary registers are zeroed
 - No shared or static data
 - No read-modify-write buffers
 - In short, no communication between vertices or fragments
- Data-parallel processing
 - GPU architectures are ALU-heavy
 - Multiple vertex & pixel pipelines
 - Lots of compute power
 - GPU memory systems are designed to stream data
 - Linear access patterns can be prefetched
 - Hide memory latency
Never believe anything unless you have seen it on Mythbusters
Where are GPUs used?

Computer Games industry is the biggest force behind development of GPU Technology
Where are GPUs used?

- Medical Imaging
- Bioinformatics
- Supercomputing Centers
- CAD / CAM / CAE
- Computational Fluid Dynamics
- Computational Finance
- Seismic Exploration
- GIS
- Defense
Where are GPUs used?
Motivation
GPU Evolution and History

- **High throughput computation**
 - GeForce GTX 280: 933 GFLOP/s

- **High bandwidth memory**
 - GeForce GTX 280: 140 GB/s

- **High availability to all**
 - 180+ million CUDA-capable GPUs in the wild

1995

- **RIVA 128**
 - 3M xtors

2000

- **GeForce® 256**
 - 23M xtors

2005

- **GeForce 3**
 - 125M xtors

- **GeForce FX**
 - 60M xtors

2010

- **GeForce 8800**
 - 681M xtors

- **Fermi**
 - 3B xtors
Graphics Pipeline

The traditional model for 3-D Rendering

Input
- Vertices and Primitives
- Transformations
- Lighting Parameters, etc...

Output
- 2D Image for display

slide by Matthew Bolitho
- Render **interactive**, realistic computer generated scenes
 - Each frame is complex
 - Need 60 frames per second

- CPU’s were too slow!

→ Dedicated hardware
To improve performance, move some work to dedicated hardware

Hardware could process each vertex and each fragment independently → Highly Parallel
The Graphics Pipeline was “fixed-function”

⇒ Hardware was hardwired to perform the operations in the pipeline

⇒ Eventually, pipeline became more programmable
Programmability (2000)

- Texture and Fragment stages became more programmable, combined into “Fragment Unit”
- Programmable via assembly language
- Memory reads via texture lookups
- “Dependant” texture lookups
- Limited Program size
- No real branching (thus looping)

slide by Matthew Bolitho
Programmability (2001)

- Geometry stage became programmable, called “Vertex Unit”
- Programmable via assembly language
- No memory reads!
- Limited Program size
- No real branching (thus looping)

slide by Matthew Bolitho
Programability (2003)

- Things improved over time:
 - Vertex unit can do memory reads
 - Maximum Program size increased
 - Branching support
 - Higher level languages (e.g. HLSL, Cg)

- Neither the Vertex or Fragment units could write to memory. Can only write to frame buffer
- No integer math
- No bitwise operators

slide by Matthew Bolitho

CPU/Host
- Application
 - Command
 - Vertex Unit
 - Rasterization
 - Fragment Unit
 - Display
 - Texture Memory
 - Texture Memory

slide by Matthew Bolitho
In 2003 GPU’s became mostly programmable,

“Multi-pass” algorithms allowed writes to memory:
- In pass 1 write to framebuffer
- Rebind the framebuffer as a texture
- Read it in pass 2, etc.

But were inefficient
Despite limitations, GPGPU community grew (GPGPU = General Purpose Computation on the GPU)

GPGPU Program:
- Don’t use Vertex Unit
- Place data in textures
- Draw a flat quad (off-screen)
- Write multi-pass algorithm using Fragment Unit to perform custom processing
GPGPU Limitations

- Under-utilized hardware
 - Only utilized Fragment Unit
 - Often memory bandwidth limited
- Gather-based algorithms only (no scatter)
- Used the Graphics API
Graphics Pipeline (2007)

CPU/Host

Application

Command

Graphics Hardware

Vertex Unit

Geometry Unit

Rasterization

Fragment Unit

Display

Memory

Memory

Memory

slide by Matthew Bolitho
Geometry Unit operates on a primitive, can write back to memory

Changes to underlying hardware:
- Ability to write to memory
- “Unified” processing units
Graphics in a Nutshell

• Make great images
 – intricate shapes
 – complex optical effects
 – seamless motion

• Make them fast
 – invent clever techniques
 – use every trick imaginable
 – build monster hardware
Lessons from Graphics Pipeline

• **Throughput** is paramount
 – must paint every pixel within frame time
 – scalability

• Create, run, & retire **lots of threads** very rapidly
 – measured 14.8 Gthread/s on `increment()` kernel

• Use **multithreading** to hide latency
 – 1 stalled thread is OK if 100 are ready to run
Why is this different from a CPU?

- Different goals produce different designs
 - GPU assumes work load is highly parallel
 - CPU must be good at everything, parallel or not

- CPU: minimize latency experienced by 1 thread
 - big on-chip caches
 - sophisticated control logic

- GPU: maximize throughput of all threads
 - # threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
 - multithreading can hide latency => skip the big caches
 - share control logic across many threads
Problem: GPGPU

OLD: GPGPU – trick the GPU into general-purpose computing by casting problem as graphics
- Turn data into images ("texture maps")
- Turn algorithms into image synthesis ("rendering passes")

Promising results, but:
- Tough learning curve, particularly for non-graphics experts
- Potentially high overhead of graphics API
- Highly constrained memory layout & access model
- Need for many passes drives up bandwidth consumption
What Is CUDA?

- **CUDA**: Compute Unified Device Architecture
- Created by NVIDIA

A way to perform computation on the GPU

Specification for:
- A computer architecture
- A language
- An application interface (API)

slide by Matthew Bolitho
Prerequisites

- You (probably) need experience with C or C++
- You don’t need GPU experience
- You don’t need parallel programming experience
- You don’t need graphics experience
CUDA Advantages over Legacy GPGPU

- Random access to memory
 - Thread can access any memory location

- Unlimited access to memory
 - Thread can read/write as many locations as needed

- User-managed cache (per block)
 - Threads can cooperatively load data into SMEM
 - Any thread can then access any SMEM location

- Low learning curve
 - Just a few extensions to C
 - No knowledge of graphics is required

- No graphics API overhead
Some Design Goals

- Scale to 100’s of cores, 1000’s of parallel threads
- Let programmers focus on parallel algorithms
 - Not on the mechanics of a parallel programming language
- Enable heterogeneous systems (i.e. CPU + GPU)
 - CPU and GPU are separate devices with separate DRAMs
CUDA Installation

- CUDA installation consists of
 - Driver
 - CUDA Toolkit (compiler, libraries)
 - CUDA SDK (example codes)
Heterogeneous Computing

- Terminology:
 - **Host** The CPU and its memory (host memory)
 - **Device** The GPU and its memory (device memory)
#include <iostream>
#include <algorithm>
using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global__ void stencil_1d(int *in, int *out)
{
 __shared__ int temp[BLOCK_SIZE + 2 * RADIUS];

 int gindex = threadIdx.x + blockIdx.x * blockDim.x;
 int lindex = threadIdx.x + RADIUS;

 // Read input elements into shared memory
 temp[lindex] = in[gindex];
 if (threadIdx.x < RADIUS)
 {
 temp[lindex - RADIUS] = in[gindex - RADIUS];
 temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
 }

 __syncthreads();

 // Apply the stencil
 int result = 0;
 for (int offset = -RADIUS; offset <= RADIUS; offset++)
 {
 result += temp[lindex + offset];
 }

 // Store the result
 out[gindex] = result;
}

void fill_ints(int *x, int n)
{
 fill_n(x, n, 1);
}

int main(void)
{
 int *in, *out;
 // host copies of a, b, c
 int *d_in, *d_out;
 // device copies of a, b, c
 int size = (N + 2*RADIUS) * sizeof(int);

 // Alloc space for host copies and setup values
 in = (int*)malloc(size);
 fill_ints(in, N + 2*RADIUS);
 out = (int*)malloc(size);
 fill_ints(out, N + 2*RADIUS);

 // Alloc space for device copies
 cudaMalloc((void**)&d_in, size);
 cudaMalloc((void**)&d_out, size);

 // Copy to device
 cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
 cudaMemcpy(d_out, out, size, cudaMemcpyHostToDevice);

 // Launch stencil_1d() kernel on GPU
 stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out + RADIUS);

 // Copy result back to host
 cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);

 // Cleanup
 cudaFree(d_in);
 cudaFree(d_out);
 return 0;
}
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU code and execute it, caching data on chip for performance
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
Memory Management

- Host and device memory are separate entities
 - *Device* pointers point to GPU memory
 - May be passed to/from host code
 - May *not* be dereferenced in host code
 - *Host* pointers point to CPU memory
 - May be passed to/from device code
 - May *not* be dereferenced in device code

- Simple CUDA API for handling device memory
 - `cudaMalloc()`, `cudaFree()`, `cudaMemcpy()`
 - Similar to the C equivalents `malloc()`, `free()`, `memcpy()`
CUDA Software Development

CUDA Optimized Libraries:
- math.h, FFT, BLAS, …

Integrated CPU + GPU
- C Source Code

NVIDIA C Compiler

NVIDIA Assembly
- for Computing (PTX)

CUDA Driver

Profiler

GPU

CPU Host Code

Standard C Compiler

CPU
Compiling CUDA Code

Overview

C/C++ CUDA Application

NVCC

PTX Code

CPU Code

PTX to Target Compiler

G80

...

GPU

Target code

Virtual

Physical
Key Parallel Abstractions in CUDA

- Trillions of lightweight threads
 - Simple decomposition model

- Hierarchy of concurrent threads
 - Simple execution model

- Lightweight synchronization of primitives
 - Simple synchronization model

- Shared memory model for thread cooperation
 - Simple communication model
Example: Vector Addition Using CUDA

Vector addition is inherently a (data) parallel operation.
Example: vector_addition

// compute vector sum h_C = h_A + h_B
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
 for (int i = 0; i < N; i++)
 C[i] = h_A[i] + h_B[i];
}

int main()
{
 // Memory allocation for h_A, h_B, h_C
 // I/O to head h_A, h_B, N
 vecAdd(h_a, h_b, h_c, N);
}
Now move the work to Device

```c
#include <cuda.h>

void vecAdd(float* h_A, float* h_B, float* h_C, int n) {
    int size = n * sizeof(float);
    float *A_d, *B_d, *C_d;

    1. // Allocate device memory for A, B, C
       // copy A and B to device memory
    2. // Kernel Launch code – to have the device
       // perform the actual vector addition
    3. // copy C from the device memory
       // Free the device vectors
}
```
We need to assign memory in the device (GPU) for the Variables that we wish to use in the device.

```c
float *h_A, *h_B, *h_C
malloc(); // assign memory
free();   // free memory

float *d_A, *d_B, *d_C
cudamalloc()
cudafree()
```
Memory Model

All the blocks within the device have access to global memory of the device
Key Functions in CUDA

cudaMalloc()
- Allocates object in the device global memory
- Two parameters
 - Address of a pointer to the allocated object
 - Size of the allocated object in bytes

cudaFree()
- Frees object from device global memory
- Pointer to the object to be freed

cudaMemcpy()
- memory data transfer
- requires four parameters
 - Pointer to destination
 - Pointer to source
 - Number of bytes to be copied
 - Type/Direction of transfer

Eg: cudaMemcpy(d_a, A, size, cudaMemcpyHostToDevice)
A more complete version of vecAdd()

```c
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    int size = n * sizeof(float);
    float *A_d, *B_d, *C_d;

    // Allocate Memory on Device
    cudaMalloc((void**) &d_A, size);
    cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void**) &d_B, size);
    cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
    cudaMalloc((void**) &d_C, size);

    // Kernel invocation code – shown in next slide

    // Copy result back to variable on Host
    cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

    // Free device (GPU) memory
    cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}
```
Launching the kernel

```c
// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if (i < n) // Disable unused threads
        C[i] = A[i] + B[i];
}

void vecAdd(float* h_A, float* h_B, float* h_C, int n){
    // memory assignment statements omitted
    vecAddKernel <<< ceil(n/256.0), 256 >>> (d_A, d_B, d_C, n);
}
```

Number of blocks/grid
Number of threads/block
CUDA Keywords

<table>
<thead>
<tr>
<th>global</th>
<th>Executed on</th>
<th>Only callable from</th>
</tr>
</thead>
<tbody>
<tr>
<td>device float DeviceFunc()</td>
<td>device</td>
<td>device</td>
</tr>
<tr>
<td>global float KernelFunc()</td>
<td>device</td>
<td>host</td>
</tr>
<tr>
<td>host float HostFunc()</td>
<td>host</td>
<td>host</td>
</tr>
</tbody>
</table>
Executing Code on the GPU

- Kernels are C functions with some restrictions
 - Cannot access host memory
 - Must have `void` return type
 - No variable number of arguments ("varargs")
 - Not recursive
 - No static variables

- Function arguments automatically copied from host to device
Grid, Block, Thread, Kernel..

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
```

All threads that are generated by a kernel during an invocation are collectively called a grid.

FIGURE 3.2

Execution of a CUDA program.
A grid consists of multiple blocks. Each block has finite size (usually in increments of 32, since 32 threads form a warp).

Each block can execute many threads.

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
```
int i = threadIdx.x + blockDim.x * blockIdx.x;

Block = 1, Block Dimension = 256, Thread id = 2

\[
258 = 2 + 256 \times 1
\]
Execution Model

Software

- Thread
- Thread Block

Hardware

- Thread Processor
- Multiprocessor
- Grid
- Device

Basics

- Threads are executed by thread processors
- Thread blocks are executed on multiprocessors
- Thread blocks do not migrate
- Several concurrent thread blocks can reside on one multiprocessor - limited by multiprocessor resources (shared memory and register file)
- A kernel is launched as a grid of thread blocks
- Only one kernel can execute on a device at one time
Kernel Memory Access

- **Per-thread**
 - Thread
 - Registers: On-chip
 - Local Memory: Off-chip, uncached

- **Per-block**
 - Block
 - Shared Memory: On-chip, small, Fast

- **Per-device**
 - Kernel 0, Kernel 1
 - Global Memory: Off-chip, large, Uncached, Persistent across kernel launches, Kernel I/O
Launching Kernels

- Modified C function call syntax:

```c
kernel<<<dim3 dG, dim3 dB>>>(...)
```

- Execution Configuration ("<<< >>>")
 - `dG` - dimension and size of grid in blocks
 - Two-dimensional: x and y
 - Blocks launched in the grid: `dG.x * dG.y`
 - `dB` - dimension and size of blocks in threads:
 - Three-dimensional: x, y, and z
 - Threads per block: `dB.x * dB.y * dB.z`
 - Unspecified `dim3` fields initialize to 1
A more complete version of vecAdd()

```c
__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
    int i = threadIdx.x + blockDim.x * blockIdx.x;
    if (i < n)
        C[i] = A[i] + B[i];
}
```

```c
void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{
    int size = n * sizeof(float);
    float *A_d, *B_d, *C_d;

    cudaMalloc((void**) &d_A, size);
    cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
    cudaMalloc((void**) &d_B, size);
    cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
    cudaMalloc((void**) &d_C, size);

    vecAddKernel <<< ceil(n/256.0), 256 >>> (d_A, d_B, d_C, n);

    cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

    //Free device (GPU) memory
    cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}
cudaMalloc((void**) &d_A, size);

In practice, this code should be surrounded by tests for error conditions and printout error messages.

cudaError_t err = cudaMalloc((void**) &d_A, size);
if(err != cudaSuccess){
    printf("%s in %s at line %d \n", cudaGetErrorString(err), __FILE__, __LINE__);

    exit(EXIT_FAILURE)
}


C for CUDA

• Philosophy: provide minimal set of extensions necessary to expose power

• Function qualifiers:
  ```c
 __global__ void my_kernel() { }
 __device__ float my_device_func() { }
  ```

• Variable qualifiers:
  ```c
 __constant__ float my_constant_array[32];
 __shared__ float my_shared_array[32];
  ```

• Execution configuration:
  ```c
 dim3 grid_dim(100, 50); // 5000 thread blocks
 dim3 block_dim(4, 8, 8); // 256 threads per block
 my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel
  ```

• Built-in variables and functions valid in device code:
  ```c
 dim3 gridDim; // Grid dimension
 dim3 blockDim; // Block dimension
 dim3 blockIdx; // Block index
 dim3 threadIdx; // Thread index
 void __syncthreads(); // Thread synchronization
Kernel Variations and Output

```c
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = 7;
}

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
```

```
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = blockIdx.x;
}

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3
```

```
__global__ void kernel( int *a )
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    a[idx] = threadIdx.x;
}

Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
```
Code executed on GPU

- **C/C++ with some restrictions:**
 - Can only access GPU memory
 - No variable number of arguments
 - No static variables
 - No recursion
 - No dynamic polymorphism

- **Must be declared with a qualifier:**
 - __global__: launched by CPU, cannot be called from GPU must return void
 - __device__: called from other GPU functions, cannot be called by the CPU
 - __host__: can be called by CPU
 - __host__ and __device__ qualifiers can be combined
 - sample use: overloading operators
Memory Spaces

- CPU and GPU have separate memory spaces
 - Data is moved across PCIe bus
 - Use functions to allocate/set/copy memory on GPU
 - Very similar to corresponding C functions

- Pointers are just addresses
 - Can’t tell from the pointer value whether the address is on CPU or GPU
 - Must exercise care when dereferencing:
 - Dereferencing CPU pointer on GPU will likely crash
 - Same for vice versa
GPU Memory Allocation / Release

- Host (CPU) manages device (GPU) memory:
 - `cudaMalloc (void ** pointer, size_t nbytes)`
 - `cudaMemset (void * pointer, int value, size_t count)`
 - `cudaFree (void* pointer)`

```c
int n = 1024;
int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a, nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);
```
Data Copies

- `cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);`
 - returns after the copy is complete
 - blocks CPU thread until all bytes have been copied
 - doesn’t start copying until previous CUDA calls complete

- `enum cudaMemcpyKind`
 - `cudaMemcpyHostToDevice`
 - `cudaMemcpyDeviceToDevice`
 - `cudaMemcpyDeviceToHost`

- Non-blocking copies are also available
IDs and Dimensions

- **Threads:**
 - 3D IDs, unique within a block
- **Blocks:**
 - 2D IDs, unique within a grid
- **Dimensions set at launch**
 - Can be unique for each grid
- **Built-in variables:**
 - threadIdx, blockIdx
 - blockDim, gridDim
__global__ void kernel(int *a, int dimx, int dimy)
{
 int ix = blockIdx.x*blockDim.x + threadIdx.x;
 int iy = blockIdx.y*blockDim.y + threadIdx.y;
 int idx = iy*dimx + ix;

 a[idx] = a[idx]+1;
}

Kernel with 2D Indexing
Blocks must be independent

• Any possible interleaving of blocks should be valid
 – presumed to run to completion without pre-emption
 – can run in any order
 – can run concurrently OR sequentially

• Blocks may coordinate but not synchronize
 – shared queue pointer: OK
 – shared lock: BAD … can easily deadlock

• Independence requirement gives scalability
Host Synchronization

- All kernel launches are asynchronous
 - control returns to CPU immediately
 - kernel executes after all previous CUDA calls have completed
- cudaMemcpy() is synchronous
 - control returns to CPU after copy completes
 - copy starts after all previous CUDA calls have completed
- cudaThreadSynchronize()
 - blocks until all previous CUDA calls complete
Host Synchronization Example

// copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code
run_cpu_stuff();

// copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);
Device Runtime Component: Synchronization Function

void __syncthreads();

Synchronizes all threads in a block
- Once all threads have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared

Allowed in conditional code only if the conditional is uniform across the entire thread block
Host Runtime Component: Device Management

- **Device enumeration**
 - `cudaGetDeviceCount()`, `cudaGetDeviceProperties()`

- **Device selection**
 - `cudaChooseDevice()`, `cudaSetDevice()`

> ~/NVIDIA_CUDA_SDK/bin/linux/release/deviceQuery

There is 1 device supporting CUDA

Device 0: "Quadro FX 5600"
- Major revision number: 1
- Minor revision number: 0
- Total amount of global memory: 1609891840 bytes
- Total amount of constant memory: 65536 bytes
- Total amount of shared memory per block: 16384 bytes
- Total number of registers available per block: 8192
- Warp size: 32
- Maximum number of threads per block: 512
- Maximum sizes of each dimension of a block: 512 x 512 x 64
- Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
- Maximum memory pitch: 262144 bytes
- Texture alignment: 256 bytes
- Clock rate: 1350000 kilohertz
Host Runtime Component: Memory Management

- **Two kinds of memory:**
 - **Linear memory:** accessed through 32-bit pointers
 - **CUDA arrays:**
 - opaque layouts with dimensionality
 - readable only through texture objects

- **Memory allocation**
 - `cudaMalloc()`, `cudaFree()`, `cudaMallocPitch()`, `cudaMallocArray()`, `cudaFreeArray()`

- **Memory copy**
 - `cudaMemcpy()`, `cudaMemcpy2D()`, `cudaMemcpyToArray()`, `cudaMemcpyFromArray()`, etc.
 - `cudaMemcpyToSymbol()`, `cudaMemcpyFromSymbol()`

- **Memory addressing**
 - `cudaGetSymbolAddress()`
Final Thoughts

• Parallel hardware is here to stay

• GPUs are massively parallel manycore processors
 – easily available and fully programmable

• Parallelism & scalability are crucial for success

• This presents many important research challenges
 – not to speak of the educational challenges
Questions?