Introduction to Parallel
Programming & CUDA

Abhijit Bendale
CS 4440/5440
03/04/2014

Textbook

NVIDIA.

PG-02829-001_v5.5 | July 2013

Design Guide

SECOND EDITION
Programming Massively
Parallel Processors

A Hands-on Approach

Available on Nvidia’s website

Goals

* Learn how to program massively parallel
processors and achieve

— High performance
— Functionality and maintainability
— Scalability across future generations

» Acquire technical knowledge required to
achieve above goals
— Principles and patterns of parallel programming
— Processor architecture features and constraints
— Programming API, tools and techniques

Moore’ s Law (paraphrased)

“The number of transistors on an integrated
circuit doubles every two years.”

— Gordon E. Moore

Moore’s Law

The most economic number of components
in an IC will double every year

Historically — CPUs get faster

- Hardware reaching frequency limitations

Now — CPUs get wider

siide by Matthew Bolitho

=

GPU!

Parallel Computing

Rather than expecting CPUs to get twice as
fast, expect to have twice as many!

Parallel processing for the masses
Unfortunately: Parallel programming is hard.

- Algorithms and Data Structures must be
fundamentally redesigned

siide by Moatthew Boktho

Serial Performance Scaling is Over

continue to scale processor frequencies
— no 10 GHz chips

continue to increase power consumption
— can’ t melt chip

« Can continue to increase transistor density
— as per Moore’ s Law

How to Use Transistors?

 Instruction-level parallelism
— out-of-order execution, speculation, ...
In power-constrained world

« Data-level parallelism
— vector units, SIMD execution, ...

— increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU

* Thread-level parallelism
— Increasing ... multithreading, multicore, manycore

— Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi,

Why Massively Parallel Processing?

« A quiet revolution and potential build-up
— Computation: TFLOPs vs. 100 GFLOPs

NVIDIA GPU
Intel CPU

9/22/02 2/4/04 6/18/05 10/31/06 3/14/08 7/27/09

FLOPS: Floating point operation per second = cores x clock x FLOPs/cycle
e.g. 4 FLOPs/Cycle i.e 2.5 GHz processor has theoretical performance of 10 Billion FLOPS
i.e 10 GFlops

Why Massively Parallel Processing?

* A quiet revolution and potential build-up
— Bandwidth: ~10x

GBytels

200 -

T12
g o R _
60 | *NvIDIAGPU
140 . IntelCPU w7 GT200
120 4
o el R
1 e B L
1 L
L N e 1+ E T —

20 3GHz Dual Core2 Duo

LA _Corep4 _, —
0 — — T — vI T T T

9/22/2002 21412004 6/18/2005 10/31/2006 3/14/2008 712712009

— GPU in every PC — massive volume & potential impact

The “New” Moore’ s Law

« Computers no longer get faster, just wider

A (o]V re-think your algorithms to be
parallel !

4°cees 8 re@es 16 cores...

« Data-parallel computing is most scalable
solution
— Otherwise: refactor code for 2 cores

— You will always have more data than cores —
build the computation around the data

Enter the GPU

* Massive economies of scale

* Massively parallel

GPUs are REALLY fast

B Performance (gflops) Development Time (hours)

3D Filterbank Convolution

PS3

GT200

Nicolas Pinto, James DiCarlo, David Cox (MIT, Harvard)

GPUs are Fast! <3

NVIDIA

8x Higher Linpack

Performance Performance / $ Performance / watt
Gflops Gflops / $K Gflops / kwatt
750 - _
656.1 70 s 800 -
600 4 60 - 656
50 A 600 -
450 - 40 -
400 -+
300 A 30 -
20 -
200 - 146
150 1 80.1 10 4 i .
0 __- T 1 0 . T 1 O T
CPU Server GPU-CPU CPU Server GPU-CPU CPU Server GPU-CPU
Server Server Server

CPU 1U Server: 2x Intel Xeon X5550 (Nehalem) 2.66 GHz, 48 GB memory, $7K, 0.55 kw
GPU-CPU 1U Server: 2x Tesla C2050 + 2x Intel Xeon X5550, 48 GB memory, $11K, 1.0 kw

© NVIDIA Corporation 2011

World’s Fastest MD Simulation <3

NVIDIA

Sustained Performance of 1.87 Petaflops/s

Institute of Process Engineering (IPE)
Chinese Academy of Sciences (CAS)

Used all 7168 Tesla GPUs on
Tianhe-1A GPU Supercomputer

MD Simulation for Crystalline Silicon

© NVIDIA Corporation 2011

World’s Greenest Petaflop Supercomputer <3

NVIDIA

Tsubame 2.0

Tokyo Institute of Technology

* 1.19 Petaflops
* 4,224 Tesla M2050 GPUs

© NVIDIA Corporation 2011

Increasing Number of Professional CUDA rf,?zm
Applications

Available R Future ssssssssss

Tools &
Libraries

Oil & Gas

Numerical
Analytics

NVIDIA Developer Ecosystem <3

NVIDIA.

Debuggers GPU Compilers Parallelizing

& Profilers

Numerical
Packages

GPGPU Consultants & Training

Compilers

Libraries

OEM Solution Providers

STONE RIDGE

e ~
J=LJ= | | SUPERMICR®

Y, SCALABLS
< T GRAPHICS

© NVIDIA Corporation 2011

>
NVIDIA

Parallel Nsight Visual Profiler cuda-gdb

Visual Studio Windows/Linux/Mac Linux/Mac

File View Run Help . i

ebugging

ile Bdit Options B o ¢ Siguals Wlp

Bulld Debug

“E mP L]

CUDAkernel IDCT(float, int, int, int)

[y
T
1

LI

p threadldx

Timeline L
High Instruction Replay Overhead [46.6% avg, for k % of compute] p blockl

info cuda thre

Kernel Memory High Giobal Memory Instruction Replay Overhead [vg. for kernels accounting for 38.1% of compute]

Kernel Instruction schDie

© NVIDIA Corporation 2011

GPU!

Why so fast?

Designed for math-intensive, parallel

problems:
ALU ALU
Control
ALU ALU
Cache
DRAm DRAM
CPU GPU

More transistors dedicated to ALU than flow
control and data cache

slide by Matthew Bolkitho

GPU!

Is 1t free?

What are the consequences?
Program must be more predictable:
Data access coherency

Program flow

ALV ALY
Control
ALU ALU

Cache

CPU GPU

siide by Matthew Bokitho

CPU vs. GPU
. CPU

- Really fast caches (great for data reuse)

- Fine branching granularity

- Lots of different processes/threads

- High performance on a single thread of execution

« GPU

Lots of math units

Fast access to onboard memory

Run a program on each fragment/vertex
High throughput on parallel tasks

« CPUs are great for task parallelism
« GPUs are great for data parallelism

skide by Mike Houston

Task vs. Data parallelisa GPU! o

e Task parallel
- Independent processes with little communication

- Easy to use
« “Free” on modern operating systems with SMP

e Data parallel

Lots of data on which the same computation is being
executed

No dependencies between data elements in each
step in the computation

Can saturate many ALUs
But often requires redesign of traditional algorithms

slide by Mike Houston

: s
The Importance of Data Parallelism fo GPU

e GPUs are designed for highly parallel tasks like
rendering

« GPUs process independent vertices and fragments
- Temporary registers are zeroed
- No shared or static data
- No read-modify-write buffers
- In short, no communication between vertices or fragments

» Data-parallel processing
- GPU architectures are ALU-heavy
» Multiple vertex & pixel pipelines
» Lots of compute power
- GPU memory systems are designed to stream data
» Linear access patterns can be prefetched
» Hide memory latency slide by Mike Houston

Never believe anything unless you have seen it on
Mythbusters

Where are GPUs used?

1080p, High | 1080p, High

1080p, High

1080p, High

PC ovo-rom

SSASSINS 4

& CREEDII “}

1080p, High

1080p, Ultra | 1080p, Ultra

1080p, Ultra

1080p, Ultra

1080p, Ultra

Computer Games industry is the biggest force behind development of GPU Technology

Where are GPUs used?

BIOINFORMATICS

MEDICAL IMAGING SUPERCOMPUTING CENTERS

¢ ,
\? o _.lllllvl’”mh
15

DEFENSE

- |] ~
- R ™
b S N - <
NN
N
< N \ 7
a - o ‘\” ” S
=5 D b)bj;
.
i

-

Where are GPUs used?

COMPUTATIONAL STRUCTURAL
COMPUTATIONAL FLUID DYNAMICS MECHANICS DATA SCIENCE

SAU69uyhaw
/ha8t47sd 14
kKhgthgkdsuh)
6zsuisdka8oud

ichagthgkdsuxf
wabfuweguywye
wgcsahe 1wtk
vh3weuytq”

MCcusa” \

W

DEFENSE ELECTRONIC DESIGN AUTOMATION IMAGING & COMPUTER VISION

40

~
- -

B

<
S~

MEDICAL IMAGING NUMERICAL ANALYTICS WEATHER AND CLIMATE

-

13—457x%

Motivation

110-240X

GPU Evolution and History

» High throughput computation
— GeForce GTX 280: 933 GFLOP/s
* High bandwidth memory
— GeForce GTX 280: 140 GB/s
« High availability to all
— 180+ million CUDA-capable GPUs in the wild

GeForce 8800
681M xtors

GeForce FX
125M xtors

GeForce 3
GeForce® 256 60M xtors

RIVA128 23M xtors
3M xtors

1995 2000 2005 2010

Graphics Pipeline

anplcation The traditional model for 3-D Rendering
: 4
Command Input
4 Vertices and Primitives
Geometry Transformations
' Lighting Parameters, etc...
Rasterization
- ' Output
e);ture 2D Image for display
Fragment
4
Display

slide by Matthew Bolitho

Challenge

Render interactive, realistic computer
generated scenes

Each frame is complex
Need 60 frames per second

CPU'’'s were too slow!

- Dedicated hardware

slide by Matthew Bolitho

Graphics Pipeline

e acelication To improve performance, move some
=) 4 work to dedicated hardware
ej Command
m—— Hardware could process each vertex
Geometry -
and each fragment independently
. ' > Highly Parallel
S Rasterization
3 '
(%)
L Texture
O
= g
&
5 Fragment
4
Display

slide by Matthew Bolitho

HistO"y

The Graphics Pipeline was “fixed-function”

—> Hardware was hardwired to perform the
operations in the pipeline

Eventually, pipeline became more
programmable

slide by Matthew Bolitho

Programability (2000)

s ARpication Texture and Fragment stages became
> 4 more programmable, combined into
v Command “Fragment Unit”

Geometry Programmable via assembly language
o ‘ _ Memory reads via texture lookups
S RaSteizat'on “Dependant” texture lookups
O
:
3 . CUnit Limited Program size
= ragment Uni _ _
%) No real branching (thus looping)
O

g
Display

slide by Matthew Bolitho

Programability (2001)

+ L
L ARpication Geometry stage became
=) . programmable, called "Vertex Unit”
O Command
T r— " Programmable via assembly language
VertexUnit No memory reads!

4
2 Rasterization . .
2 Limited Program size
= . 4 . .
ke No real branching (thus looping)
= Fragment Unit
o
o
O

L 4

Display

slide by Matthew Bolitho

Programability (2003)

5 Applicati
ication
° PP
3 A 4
O Command
Vertex Unit
A 4
()] . -
o Rasterization
3 '
(%)
T
O
= Fragment Unit
Q.
o
G)
4
Display

Things improved over time:

Vertex unit can do memory reads
Maximum Program size increased
Branching support

Higher level languages (e.g. HLSL, Cq)

Neither the Vertex or Fragment units
could write to memory. Can only write
to frame buffer

No integer math

No bitwise operators

slide by Matthew Bolitho

Graphics Pipeline (2003,

IS Application
ke PP
3 : 2
S5 Command
1
v S
©] >
2 i 3 Fragment o
© VertexUnit = ¢ = ar ad BN
ke o
=
o
o
| 1
Texture Memory Texture Memory

slide by Matthew Bolitho

Graphics Pipeline (2003,

In 2003 GPU’s became mostly programmable,

"Multi-pass” algorithms allowed writes to
memory:

In pass 1 write to framebuffer

Rebind the framebuffer as a texture

Read it in pass 2, etc.
But were inefficient

slide by Matthew Bolitho

H'\stO\'y

Despite limitations, GPGPU community grew
(GPGPU = General Purpose Computation on the GPU)

GPGPU Program:
Don’t use Vertex Unit
Place data in textures
Draw a flat quad (off-screen)

Write multi-pass algorithm using Fragment Unit
to perform custom processing

slide by Matthew Bolitho

GPGPU Limitations

Under-utilized hardware
Only utilized Fragment Unit

Often memory bandwidth limited
Gather-based algorithms only (no scatter)
Used the Graphics API

slide by Matthew Bolitho

CPU /[Host

Graphics Hardware

Application
4

Command

VertexUnit =

Geometry
Unit

!

Memory

Memory

Rasterization

=

>

Fragn‘_nent - ?:i

Unit A
Memory

slide by Matthew Bolitho

Graphics Pipeline (2007!

Geometry Unit operates on a primitive, can
write back to memory

Changes to underlying hardware:
Ability to write to memory
“"Unified” processing units

slide by Matthew Bolitho

Graphics in a
 Make great images
— Intricate shapes
— complex optical effects
— seamless motion

« Make them fast

— invent clever
techniques

— use every trick
Imaginable

— build monster
hardware

Lessons from Graphics Pipeline

IS paramount
— must paint every pixel within frame time
— scalability

* Create, run, & retire very rapidly
— measured 14.8 Gthread/s on increment () kernel

« Use to hide latency
— 1 stalled thread is OK if 100 are ready to run

Why is this different from a CPU?

 Different goals produce different designs
— GPU assumes work load is highly parallel
— CPU must be good at everything, parallel or not

« CPU: experienced by 1 thread
— big on-chip caches
— sophisticated control logic

e GPU: of all threads

— # threads in flight limited by resources => lots of resources
(registers, bandwidth, etc.)

— multithreading can hide latency => skip the big caches
— share control logic across many threads

" CUDA

Overview

Problem: GPGPU ov ervn\"nm

« OLD: GPGPU - trick the GPU into general-purpose
computing by casting problem as graphics
« Turn data into images (“texture maps”)
« Turn algorithms into image synthesis (“rendering passes”)

« Promising results, but:
« Tough learning curve, particularly for non-graphics experts
« Potentially high overhead of graphics API
« Highly constrained memory layout & access model
« Need for many passes drives up bandwidth consumption

rview

CUDA: Compute Unified Device Architecture
Created by NVIDIA

A way to perform computation on the GPU

Specification for:
A computer architecture
A language
An application interface (API)

slide by Matthew Bolitho

Prerequisites N>

NVIDIA

* You (probably) need experience with C or C++
* You don’'t need GPU experience
* You don’t need parallel programming experience

* You don’t need graphics experience

© NVIDIA Corporation 2011

rvieWw

ove N
CUDA Advantages over Legacy GPGPU

® Random access to memory
® Thread can access any memory location

® Unlimited access to memory
® Thread can read/write as many locations as needed

® User-managed cache (per block)

® Threads can cooperatively load data into SMEM
® Any thread can then access any SMEM location

® Low learning curve

® Just a few extensions to C
® No knowledge of graphics is required

® No graphics API overhead

© NVIDIA Corporation 2006

Some Design Goals rv"ew

® Scale to 100’s of cores, 1000’s of parallel
threads

® Let programmers focus on parallel algorithms

® Not on the mechanics of a parallel programming
language

® Enable heterogeneous systems (i.e. CPU + GPU)

® CPU and GPU are separate devices with separate
DRAMs

<SANVIDIA

CUDA Installation

ieW

overvy

® CUDA installation consists of
® Driver
® CUDA Toolkit (compiler, libraries)
® CUDA SDK (example codes)

<A NVIDIA

Heterogeneous Computing >

NVIDIA

= Terminology:
= Host The CPU and its memory (host memory)
= Device The GPU and its memory (device memory)

Device

© NVIDIA Corporation 2011

Heterogeneous Computing

device code -+

host code

© NVIDIA Corporation 2011

void stencil_1d(in

the result
outfgindex] = result

void fill_ints(int *x, int n) {
[n 1)

il_n(x, n.

int main(void) {

out = (int *)mall

e for ¢

result bac
emapy(out

t *in, int *out) {
ZE +

2 * RADIUS]

d setup values

; filLints(in,

N +2'RADIU:

fill_ints(out, N + 2*RADI

device copie

K to hos
, d_out,

(out);

(d_in;

cudaFree(d_out)

S{ToD:
mcpyHostToDe

d_in + RADIU!

mcpyDeviceToHost);

d_out + RADIUS);

- parallel function

g

- serial functio

- serial code

parallel code
serial code

>
NVIDIA

Simple Processing Flow >

NVIDIA

GigaThread™

CPU

CPU Memory

1. Copy input data from CPU memory to GPU

mem Ory erconnect
L2

-

DRAM

© NVIDIA Corporation 2011

Simple Processing Flow >

NVIDIA

| GigaThread™

1. Copy input data from CPU memory to GPU
memory

2. Load GPU code and execute it,
caching data on chip for performance

© NVIDIA Corporation 2011

Simple Processing Flow <3

NVIDIA

GigaThread™

CPU

[]

PCIl Bus

CPU Memg

1. Copy input data from CPU memory to GPU

memory ercomect]
2. Load GPU program and execute, L2

I
caching data on chip for performance I: :

3. Copy results from GPU memory to CPU
memory DRAM

© NVIDIA Corporation 2011

Memory Management <3

NVIDIA

» Host and device memory are separate entities
= Device pointers point to GPU memory R
May be passed to/from host code N
May not be dereferenced in host code
= Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

= Simple CUDA API for handling device memory
= cudaMalloc (), cudaFree (), cudaMemcpy ()
= Similar to the C equivalents malloc (), free (), memcpy ()

© NVIDIA Corporation 2011

rview

CUDA Software Development el

CUDA Optimized Libraries: Integrated CPU + GPU
math.h, FFT, BLAS, ... C Source Code

NVIDIA C Compiler

NVIDIA Assembly

for Computing (PTX) CPU Host Code

CUDA

Driver Profiler Standard C Compiler

CPU

© 2008 NVIDIA Corporation. @2 NVIDIA

Compiling CUDA Code

C/C++ CUDA
Application

Virtual

PTX to Target PhySICaI

Compiler

G380 L/ GPU

Target code

S NVIDIA

Key Parallel Abstractions in CUDA

® Trillions of lightweight threads

@® Simple decomposition model

® Hierarchy of concurrent threads
@® Simple execution model

® Lightweight synchronization of primitives
@® Simple synchronization model

® Shared memory model for thread cooperation
@® Simple communication model

<A NVIDIA

Example:
Vector Addition Using CUDA

Al | Ara | ... Aln] vector A
o] | B[1] | ... B[n] vector B
col | cr | ... Cin] vector C

Vector addition is inherently a (data) parallel operation

Example: vector addition

void vecAdd(float* h A, float* h B, float* h C, int n)
{
for (int 1 = 0; 1 < N; 1++)
C[i] = h A[i]+ h B[i];
}

int main ()

{

Now move the work to Device

void vecAdd(float* h A, float* h B, float* h C, int n)
{
int size = n * sizeof (float);
float *A d, *B d, *C d;
1. // Allocate device memory for A, B, C
// copy A and B to device memory
2. // Kernel Launch code - to have the device
// perform the actual vector addition
3. // copy C from the device memory
// Free the device vectors

Memory Model

float *h A, *h B, *h C float *d A, *d B, *d C
malloc(); // assign memory cudaMalloc ()
free () ; // free memory cudaFree ()

Device O

Host cudaMemcpy ()

Device 1
I\/Iemory

We need to assign memory in the device (GPU) for the
Variables that we wish to use in the device

Kernel O

Memory Model

D))

Kernel 1

AA

AA

AA

AA

Per-device
Global

Memory

All the blocks within the device have access to global

memory of the device

Sequential
Kernels

Key Functions in CUDA

cudaMalloc ()
- Allocates object in the device global memory
- Two parameters
- Address of a pointer to the allocated object
- Size of the allocated object in bytes

cudaFree ()
- Frees object from device global memory
- Pointer to the object to be freed

cudaMemcpy ()
- memory data transfer
- requlres four parameters
- Pointer to destination
- Pointer to source
- Number of bytes to be copied
- Type/Direction of transfer

Eg: cudaMemcpy(d a, A, size, cudaMemcpyHostToDevice)

void vecAdd (float* h A, float* h B, float* h C, int n)

{

A more complete version of vecAdd()

int size = n * sizeof (float);
float *A d, *B d, *C d;

cudaMalloc ((void**) &d A, size);
cudaMemcpy (d A, A, size, cudaMemcpyHostToDevice) ;
cudaMalloc ((void**) &d B, size);
cudaMemcpy (d B, B, sizg, cudaMemcpyHostToDevice) ;
cudaMalloc ((void**) &d C, size);

cudaMemcpy (C, d C, size, cudaMemcpyDeviceToHost)

cudaFree (d A); cudaFree(d B); cudaFree(d C);

Launching the kernel

vold vechddrernel (float* A, float* B, float* C, int n)
{

int i = + * :
T (L < 1)
Cl[i] = A[1] + B[1];

volid vecAdd (float* h A, float* h B, float* h C, int n){
// memory assignment statements omitted

vecAddKernel <<< ceil(n/256.0), 256 >>> (d A, d B, d C, n);

Number of blocks/grid Number of threads/block

CUDA Keywords

Executed on Only callable
from
__device__ float DeviceFunc() device device
__global__ float KernelFunc() device host
__host__ float HostFunc() host host

Executing Code on the GPU

@® Kernels are C functions with some restrictions

® Cannot access host memory

® Must have void return type

® No variable number of arguments (“varargs”)
® Not recursive

® No static variables

® Function arguments automatically copied from
host to device

<A NVIDIA

Grid, Block, Thread, Kernel..

CPU serial code
Grid (

GPU parallel kernel
KemelA<<< nBIK, nTid >>>(args);

CPU serial code

GPU parallel kernel
KemelA<<< nBIK, nTid >>>(args);

All threads that are generated by a kernel during an invocation
FIGURE 3.2 are collectively called a grid

Execution of a CUDA program.

Grid, Block, Thread, Kernel..

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

)] (Device) Grid
A grid consists

Of multiple bIoc.ks_. Block (0, 0) Block (1, 0)
Each block has finite
Size (usually in

. Shared Memor Shared Memo
Increments of 32, since ! &

32 threads form a Registers Registers Registers Registers

warel S $ 1 3

Each block can execute Thread (0, 0) | Thread (1,0) Thread (0, 0) Thread (1, 0)

many threads A A
1117 1111

Global
Host ¢ Memory

Constant

—> Memory

Grid, Block, Thread, Kernel..

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

Block = 1, Block Dimension = 256, Thread id = 2

int i = threadIdx.x + blockDim.x * blockIdx.x;
= % + 250 * 1

Execution Model

Software Hardware

Thread
Processor

Threads are executed by thread
processors

Thread blocks are executed on
multiprocessors

Several concurrent thread blocks can
Thread reside on one multiprocessor - limited
Block by multiprocessor resources (shared
memory and register file)

A kernel is launched as a grid of
thread blocks

Only one kernel can execute on a
device at one time

© 2008 NVIDIA Corporation. ((bz nvi DlA

Kernel Memory Access
® Per-thread
3 <—> On-chip

eqisters I
& Thread
<« | el Eeie Off-chip, uncached
® Per-block

Block e Shared . I(:)n-chip, small
Il . t
pmid Memory as

® Per-device

= Off chip, large
q> Global [

Per3|stent across
i: Memory kernel launches

<ANnvibDiA

Launching Kernels

® Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(..)

® Execution Configuration (“<<< >>>”)

® dG - dimension and size of grid in blocks
® Two-dimensional: x and y
® Blocks launched in the grid: dG.x * dG.y

® dB - dimension and size of blocks in threads:

® Three-dimensional: x, y, and z
® Threads per block: dB.x * dB.y * dB.z

® Unspecified dim3 fields initialize to 1

<A NVIDIA

A more complete version of vecAdd()

void vecAddKernel (float* A, float* B, float* C, int n)
{
int 1 = + * e
if (1 < n)
Cli] = A[i] + B[1];

void vecAdd(float* h A, float* h B, float* h C, int n)
{
int size = n * sizeof(float);
float *A d, *B d, *C d;
cudaMalloc ((void**) &d A, size);
cudaMemcpy (d A, A, size, cudaMemcpyHostToDevice);
cudaMalloc ((void**) &d B, size);
cudaMemcpy (d B, B, sizg, cudaMemcpyHostToDevice) ;
cudaMalloc ((void**) &d C, size);

vecAddKernel <<< ceil (n/256.0), 256 >>> (daA, dB, dC, =)

cudaMemcpy (C, d C, size, cudaMemcpyDeviceToHost) ;
//Free device

cudaFree (d A);

(GPU) memory

cudaFree (d B); cudaFree(d C);

Device (GPU) code

Launching
the kernel code

Host (CPU) code

Error Handling in CUDA

cudaMalloc ((void**) &d A, size);

cudaError t err = cudaMalloc((void**) &d A, size);
if (err != cudaSuccess) {

Wo

printf (“%s in %s at line %d \n”, cudaGetErrorString
(err), FILE , LINE);

exit (EXIT FAILURE)

C for CUDA

Philosophy: provide minimal set of extensions necessary to expose power

Function qualifiers:
void my kernel () { }
float my device func() { }

Variable qualifiers:
float my constant arrayl[32];
float my shared array[32];

Execution configuration:

dim3 grid dim(100, 50); // 5000 thread blocks

dim3 block dim(4, 8, 8); // 256 threads per block

my kernel grid dim, block dim (...); // Launch kernel

Built-in variables and functions valid in device code:

dim3 ; // Grid dimension
dim3 ; // Block dimension
dim3 ; // Block index
dim3 ; // Thread index

void ; // Thread synchronization

Kernel Variations and Output

void kernel(int *a)

int idx = * +

alidx] = 7; Output: 7777777777777777

void kernel(int *a)

intidx = * + ;
alidx] = ; Output:

void kernel(int *a)

int idx = * + ;
alidx] = ; Output:

Code executed on GPU

e C/C++ with some restrictions:
— Can only access GPU memory
— No variable number of arguments
— No static variables
— No recursion
— No dynamic polymorphism

* Must be declared with a qualifier:
— _ global :launched by CPU,
cannot be called from GPU must return void
— _ device _: called from other GPU functions,
cannot be called by the CPU
— host :can be called by CPU

— host _and device qualifiers can be combined
sample use: overloading operators

Memory Spaces

— Data is moved across PCle bus

— Use functions to allocate/set/copy memory on
GPU

» Very similar to corresponding C functions

— Can’ t tell from the pointer value whether the
address is on CPU or GPU

— Must exercise care when dereferencing:

» Dereferencing CPU pointer on GPU will likely crash
« Same for vice versa

GPU Memory Allocation / Release

« Host (CPU) manages device (GPU) memory:
— cudaMalloc (void ** pointer, size t nbytes)
— cudaMemset (void * pointer, int value, size t count)
— cudaFree (void* pointer)

intn = 1024;

int nbytes = 1024*sizeof(int);

int*d a=0;

cudaMalloc((void*™)&d _a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudakFree(d_a);

Data Copies

« cudaMemcpy(void *dst, void *src, size t nbytes,
enum cudaMemcpyKind direction);

— returns after the copy is complete
— blocks CPU thread until all bytes have been copied
— doesn’ t start copying until previous CUDA calls complete

* enum cudaMemcpyKind
— cudaMemcpyHostToDevice
— cudaMemcpyDeviceToHost
— cudaMemcpyDeviceToDevice

* Non-blocking copies are also available

IDs and Dimensions
Threads:

— 3D IDs, unique within a block
Blocks:

Device

— 2D IDs, unique within a grid Block | | Block
Dimensions set at launch stk gloc ', Bl
— Can be unique for each grid ’ -
Built-in variables: “Blook (1,1

Thread | Thread | Thread | Thread | Thread
_ threadldx, blockldx
— 1 1 1 Thread | Thread | Thread | Thread | Thread
blockDim, gridDim e
Thread | Thread | Thread | Thread | Thread
0,2 | 1,2) | 22) | G2 | 42

Kernel with 2D Indexing

void kernel(int *a, int dimx, int dimy)

{
intix = * +
intiy = * +
int idx = iy*dimx + ix;

alidx] = alidx]+1;

Blocks must be independent

* Any possible interleaving of blocks should be valid
— presumed to run to completion without pre-emption
— can run in any order
— can run concurrently OR sequentially

* Blocks may coordinate but not synchronize
— shared queue pointer: OK
— shared lock: ... can easily deadlock

* Independence requirement gives scalability

Host Synchronization

@® All kernel launches are asynchronous
® control returns to CPU immediately

® kernel executes after all previous CUDA calls have
completed

® cudaMemcpy() is synchronous
® control returns to CPU after copy completes

® copy starts after all previous CUDA calls have
completed

® cudaThreadSynchronize()

® blocks until all previous CUDA calls complete

<A NVIDIA

Host Synchronization Example

/I copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

Il execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

/I run independent CPU code
run_cpu_stuff();

Il copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

© 2008 NVIDIA Corporation. ((bz nvi Dl A

Device Runtime Component:
Synchronization Function

® void _ syncthreads();

® Synchronizes all threads in a block

® Once all threads have reached this point, execution
resumes normally

® Used to avoid RAW / WAR /| WAW hazards when accessing
shared

® Allowed in conditional code only if the conditional
is uniform across the entire thread block

© NVIDIA Corporation 2006

Host Runtime Component:
Device Management

® Device enumeration
® cudaGetDeviceCount (), cudaGetDeviceProperties ()

® Device selection
® cudaChooseDevice (), cudaSetDevice ()

> ~/NVIDIA_CUDA_SDK/bin/linux/release/deviceQuery
There is 1 device supporting CUDA

Device 0: "Quadro FX 5600"
Major revision number:
Minor revision number:
Total amount of global memory: 1609891840 bytes
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 8192
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 262144 bytes
Texture alignment: 256 bytes
Clock rate: 1350000 kilohertz

© NVIDIA Corporation 2006

Host Runtime Component:
Memory Management

® Two kinds of memory:
® Linear memory: accessed through 32-bit pointers
® CUDA arrays:

® opaque layouts with dimensionality
® readable only through texture objects

@® Memory allocation

® cudaMalloc (), cudaFree (), cudaMallocPitch (),
cudaMallocArray (), cudaFreeArray ()
® Memory copy
® cudaMemcpy (), cudaMemcpy2D (),
cudaMemcpyToArray (), cudaMemcpyFromArray (), etc.
cudaMemcpyToSymbol (), cudaMemcpyFromSymbol ()
® Memory addressing
® cudaGetSymbolAddress ()

© NVIDIA Corporation 2006

Final Thoughts

Parallel hardware is here to stay

GPUs are massively parallel manycore processors
— easily available and fully programmable

Parallelism & scalability are crucial for success

This presents many important research challenges
— not to speak of the educational challenges

