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Simple Processing Flow 

1. Copy input data from CPU memory to GPU 
memory 

2. Load GPU program and execute, 
caching data on chip for performance 

3. Copy results from GPU memory to CPU 
memory 

PCI Bus 



+ Memory Model 

Device 0 
 

Device 1 
 

Host cudaMemcpy() 

Memory 

Memory 

Memory 

We need to assign memory in the device (GPU) for the 
Variables that we wish to use in the device 

float *h_A, *h_B, *h_C 
malloc(); // assign memory 
free();   // free memory 

float *d_A, *d_B, *d_C 
cudaMalloc() 
cudaFree() 



+ Memory Model 

Kernel 0 

. . . 
Per-device 

Global 
Memory 

. . . 

Kernel 1 

Sequential 
Kernels 

All the blocks within the device have access to global  
memory of the device 



+Grid, Block, Thread, Kernel.. 

 int i = threadIdx.x + blockDim.x * blockIdx.x; 

All threads that are generated by a kernel during an invocation 
are collectively called a grid 



+Grid, Block, Thread, Kernel.. 
 int i = threadIdx.x + blockDim.x * blockIdx.x; 

A grid consists 
Of multiple blocks. 
Each block has finite 
Size (usually in  
Increments of 32, 
since 32 threads form 
a warp). 

Each block can execute 
many threads 



+Grid, Block, Thread, Kernel.. 
 int i = threadIdx.x + blockDim.x * blockIdx.x; 

Grid 

Block 0 Block 1 Block N-1 

0 1 2 255 0 1 2 255 0 1 2 255 

Block = 1, Block Dimension = 256, Thread id = 2 

 int i = threadIdx.x + blockDim.x * blockIdx.x; 
  258  =  2   + 256 * 1  



+
A more complete version of vecAdd() 

 
__global__  
void vecAddKernel(float* A, float* B, float* C, int n) 
{ 
    int i = threadIdx.x + blockDim.x * blockIdx.x; 

   if (i < n)   
  C[i] = A[i] + B[i]; 

} 
 
 
void vecAdd(float* h_A, float* h_B, float* h_C, int n) 
{ 

 int size = n * sizeof(float); 
 float *A_d, *B_d, *C_d; 
   
 cudaMalloc((void**) &d_A, size); 
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice); 
 cudaMalloc((void**) &d_B, size); 
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice); 
 cudaMalloc((void**) &d_C, size); 

 
 vecAddKernel <<< ceil(n/256.0), 256 >>> (d_A, d_B, d_C, n); 

 
 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost); 
  
 //Free device (GPU) memory 
 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); 

} 
 

Launching 
the kernel 
code 

Device (GPU) code 

Host (CPU) code 
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Kernel Memory Access

Per-thread

Per-block

Per-device

Thread
Registers

Local Memory

Shared
Memory

Block

...Kernel 0

...Kernel 1

Global
Memory

T
im
e

On-chip

Off-chip, uncached

• On-chip, small

• Fast

• Off-chip, large

• Uncached

• Persistent across 
kernel launches

• Kernel I/O

Basics



+ Memory Spaces 
n  CPU and GPU have separate memory spaces 

n  Data is moved across PCIe bus 
n  Use functions to allocate/set/copy memory on GPU 

n  Very similar to corresponding C functions 
 

n  Pointers are just addresses 
n  Can’t tell from the pointer value whether the address is on CPU or GPU 
n  Must exercise care when dereferencing: 

n  Dereferencing CPU pointer on GPU will likely crash 
n  Same for vice versa 

 



+
Data Parallel Execution Model 

n  Fine-grained, data-parallel threads are fundamental means of 
parallel execution in CUDA 

n  Each thread uses a unique co-ordinate given by threadId
{x,y,z} 

n  We will now study 
n  Organization of threads 

n  Resource Assignment to threads 

n  Synchronization of threads 

n  Scheduling of threads in a grid 
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Block IDs and Thread IDs

Host Device

Block IDs and Thread IDs

�• Each thread uses IDs to
Kernel 

1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block Block

Each thread uses IDs to 
decide what data to work on
�– Block ID: 1D or 2D
�– Thread ID: 1D, 2D, or 3D 

Kernel 
2

(0, 1) (1, 1)

Grid 2

, ,

�• Simplifies memory
addressing when

Block (1, 1)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

addressing when 
processing
multidimensional data
�– Image processing

Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)�– Solving PDEs on volumes

�– �…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 9

Threads and dimensions 



+
Organization 

n  Grid is a 3D array of blocks. Each block is a 3D array of 
threads. 

n  The exact organization of a grid is determined by 
configuration parameters <<<        >>> of kernel launch 
statement 

n  <<< No of Blocks in grid,  Number of threads per block >>> 

n  E.g. if we have to execture 4096 threads 
n  dim3 dimBlock(128, 1, 1) à Create 1D grid of 128 blocks 
n  dim3 dimGrid(32, 1, 1) à each block has 32 threads 
n  vecAddKernel <<< dimBlock, dimGrid >>> ( …. ); 
n  128*32 = 4096  



+ Multi-Dimensional Data 



+
Processing Multi-Dimensional Data 

n  The choice of 1D, 2D, 3D thread organization is done based 
on the nature of data 

n  1D data : vector manipulation 

n  2D Data: Image processing 

n  3D Data: MRI Scans 



+
A 2D Example 

16 x 16 blocks 

Process an image of size 76 x 62 pixels. 
Block size: 16x16, Total blocks needed = 5x4 = 20 

5 blocks = 5x16 = 80 threads 

4 blocks 
= 4x16  
= 64 threads 

2 unused 
threads in 
Y direction 

4 unused threads in X direction 

Goal : Double the value of each pixel 



+ A 2D Example 

dim3 dimBlock(ceil(n/16.0), ceil(m/16.0), 1); 
dim3 dimGrid(16, 16, 1); 
pictureKernel<<< dimGrid, dimBlock>> (d_Pin, d_Pout, n, m) 

16 x 16 
blocks 

5 blocks = 5x16 = 80 threads 

4 blocks 
= 4x16  
= 64 threads 

2 unused 
threads in 
Y direction 4 unused threads in X direction 

gridDim.x = 5, gridDim.y  = 4, blockDim.x = 16, blockDim.y  = 16 
Total number of threads generated = 76 x 62 = 4712 

Image size 
76 x 62 



+
Picture Kernel Code 

__global__ void PictureKernel(float* d_pin, float* d_Pout, int m, int n){ 
  
 // Calculate the row number 
 int Row = blockIdx.y * blockDim.y + threadIdx.y; 

 
 // Calculate the column number 
 int Col = blockIdx.x * blockDum.x + threadIdx.x; 

 
 //each thread computes one element of d_Pout if in range 
 if( (Row < m) && (Col < n)) 
  d_Pout[Row*n + Col] = 2 * d_Pin[Row*n + Col]; 

 
} 

Source code of PictureKernel() showing 2D thread mapping to a data pattern 



+

2 1 

3 4 

 if( (Row < m) && (Col < n)) 

Some cols 
Out of range 

Some rows 
And cols out 
Of range 

Some rows out of range 

rows and cols  
both in range 



+
Row Major indexing 

index = row * width + col 

2*4 + 1  = 9 

Helpful in dynamic memory allocation. 
Address are considered in continuous locations based on datatype 
E.g. int = 4 bytes 



+ Handling Data in 3D 

The concept easily extends in 3D. Just have to keep track of  
Addition dimension 
 
int Plane = blockIdx.z * blockDim.z + threaIdx; 
 
The linearized access to array P will be in the form 
P[Plane * m * n + Row*n + Col] 
 
Thus we have to keep track of 3 variables: Plane, row, col  

Plane 

Col 

row 



+
Matrix Multiplication Example 

We will consider square matrices only for clarity 

M N 



bx

tx

0 1 2
Matrix Multiplication Using 
M lti l Bl k

Nd

01 TILE_WIDTH-12Multiple Blocks

�• Break-up Pd into tiles

W
ID
T
H�• Each block calculates one 

tile
�– Each thread calculates one 

element
�– Block size equal to tile size

Md Pd

Pd b1
0

0

T
H
E

HPdsub

TILE_WIDTH

ty 2
1

TILE_WIDTH-1

by 1

T
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E
_W
ID

W
ID
T
H
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_

WIDTHWIDTH
2

Tile Width =  Block width (difference betn book editions) 



+
Matrix Multiplication : Thread to Data 
Mapping 

__global__ void MatrixMulKernel(float* d_M, float* d_N, int m, int n){ 
  
 // Calculate the row number 
 int Row = blockIdx.y * blockDim.y + threadIdx.y; 

 
 // Calculate the column number 
 int Col = blockIdx.x * blockDum.x + threadIdx.x; 

 
 //each thread computes one element of d_Pout if in range 
 if( (Row < m) && (Col < n)){ 
    float P_value = 0; 
    // each thread computes one element of the block submatrix 
    for(int k =0; k < width; k++){ 
     Pvalue += d_M[Row * Width + k] * d_N[k * Width + Col]; 
    } 
 } 
 d_P[Row * width + Col] = Pvalue; 
  

} 



+
Why thread to data mapping? 

bx

tx

0 1 2
Matrix Multiplication Using 
M lti l Bl k

Nd

01 TILE_WIDTH-12Multiple Blocks

�• Break-up Pd into tiles

W
ID
T
H�• Each block calculates one 

tile
�– Each thread calculates one 

element
�– Block size equal to tile size

Md Pd

Pd b1
0

0

T
H
E

HPdsub

TILE_WIDTH

ty 2
1

TILE_WIDTH-1

by 1

T
IL
E
_W
ID

W
ID
T
H
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_

WIDTHWIDTH
2

•  Divide the computation in tiles/blocks.  
•  Some block dimensions might be better than others (remember our 76 x 62 

image example ? ) 
•  Find the optimal Block/Tile Sizes: “Autotuning” to gain maximum 

performance gain 
•  E.g. if we wanted to process matrix of size 1000 x 1000 

•  #define BLOCK_SIZE 16 // will generate 64 x 64 blocks 
•  #define BLOCK_SIZE 32 // will generate 32 x 32 blocks 

Which one to use of the above 2 configuration? (Determined by other 
parameters as well (like number of streaming multiprocessors etc) 



CUDA Thread Block

�• All threads in a block execute the same 
kernel program (SPMD)
Programmer declares block

CUDA Thread Block

�• Programmer declares block:
�– Block size 1 to 512 concurrent threads
�– Block shape 1D, 2D, or 3D
�– Block dimensions in threads

Thread Id #:
0 1 2 3 …          m   �– Block dimensions in threads

�• Threads have thread id numbers within block
�– Thread program uses thread id to select work 

and address shared data Thread program

�• Threads in the same block share data and 
synchronize while doing their share of the 

k

Thread program

work
�• Threads in different blocks cannot cooperate

�– Each block can execute in any order relative 
to other blocs!

Courtesy: John Nickolls, 
NVIDIA
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to other blocs!



+
Thread Synchronization 

n  To ensure that all threads in a block have completed a phase 
of their execution of the kernel before any of them can move 
on to the next phase 

n  CUDA follows barrier synchronization:  Wait till all threads 
from the block have completed execution before context/
task switch 



+
Barrier Synchronization 

Thread 0 

Thread 1 

Thread 2 

: 

Thread N 

Time  Wait till all the threads 
complete the given task 
before proceeding with  
next operation 

Time Barrier 
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Device Runtime Component:
Synchronization Function

void __syncthreads();

Synchronizes all threads in a block

Once all threads have reached this point, execution 
resumes normally

Used to avoid RAW / WAR / WAW hazards when accessing 
shared

Allowed in conditional code only if the conditional 
is uniform across the entire thread block

Basics
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Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately

kernel executes after all previous CUDA calls have 
completed

cudaMemcpy() is synchronous
control returns to CPU after copy completes

copy starts after all previous CUDA calls have 
completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

Basics
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Host Synchronization Example

// copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

Basics



+
Thread Synchronization: Points to 
understand 

n  CUDA allows thread synchronization within the block but not 
across blocks 

n  This means blocks do not have time-dependency on one 
another: Can be executed in any order 

n  This flexibility allows scalable implementations 

n  Enables execution of same code at wide range of speeds 
(hence same code can be applied to different hardware) e.g. 
different wait times for resources 

n  The ability to execute the same application code on 
hardware with a different number of execution resouces is 
referred to as transparent scalability 



Transparent Scalability
�• Hardware is free to assign blocks to any 

processor at any timeprocessor at any time
�– A kernel scales across any number of 

parallel processorsparallel processors
Device Kernel grid

Block 0 Block 1
Device

Block 0 Block 1

Block 2 Block 3

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3
time

Block 2 Block 3

Block 4 Block 5

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks. 
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Block 6 Block 7



+Assigning Resources 

A thread needs 
resources: memory, 
registers etc. 

These resources hold 
data/code for the thread 
to execute 



+
Executing thread blocks 

G80 Example: Executing Thread Blocks

t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

�• Threads are assigned to Streaming Blocks

SP SP

Multiprocessors in block granularity
�– Up to 8 blocks to each SM as 

resource allowsShared
Memory

Shared
Memory

�– SM in G80 can take up to 768 threads
�• Could be 256 (threads/block) * 3 

blocks 
�• Or 128 (threads/block) * 6 blocks etc

y y

�• Or 128 (threads/block)  6 blocks, etc.

�• Threads run concurrently
�– SM maintains thread/block id #s

SM / h d l h d

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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�– SM manages/schedules thread 
execution

Execution resources are organized into streaming multiprocessors SMs 

SMs execute the  
operations in a block 

Shared memory contains data/ 
code for execution for all the  
blocks within a SM 



+

Scheduling Blocks onto SMsg

�• HW Schedules thread blocks onto available SMs
�• No guarantee of ordering among thread blocks
�• HW will schedule thread blocks as soon as a previous thread block

finishes
64



+

Mapping of Thread BlocksMapping of Thread Blocks

�• Each thread block is mapped to one or more warpsac ead b oc s apped o o e o o e a ps
�• The hardware schedules each warp independently

TB N W1

Thread Block N (128
threads)

TB N W2
TB NW3
TB NW4

65



+

Thread Scheduling Example
�• SM implements zero-overhead warp scheduling

�– At any time, only one of the warps is executed by SM 
�– Warps whose next instruction has its inputs ready forWarps whose next instruction has its inputs ready for 

consumption are eligible for execution
�– Eligible warps are selected for execution on a 

prioritized scheduling policyprioritized scheduling policy
�– All threads in a warp execute the same instruction 

when selected

66



+
Thread Scheduling 

G80 Example: Thread Scheduling

�• Each Block is executed as 
32 thread Warps

… …Block 1 Warps Block 2 Warps …Block 1 Warps

32-thread Warps
�– An implementation decision, 

not part of the CUDA 
programming model

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

p g g
�– Warps are scheduling units 

in SM
�• If 3 blocks are assigned to an Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

g
SM and each block has 256 
threads, how many Warps are 
there in an SM? SP

SP

SP

SP

Shared Memory

�– Each Block is divided into 
256/32 = 8 Warps

�– There are 8 * 3 = 24 Warps 
SP

SP
SFU

SP

SP
SFU
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+

G80 Example: Thread Scheduling (Cont.)

�• SM implements zero-overhead warp schedulingSM implements zero overhead warp scheduling
�– Warps whose next instruction has its operands ready 

for consumption are eligible for execution
�– Eligible Warps are selected for execution on a 

prioritized scheduling policy
�– All threads in a warp execute the same instructionAll threads in a warp execute the same instruction 

when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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+

G80 Block Granularity Considerations

�• For Matrix Multiplication using multiple blocks, should I 
use 8X8 16X16 or 32X32 blocks?use 8X8, 16X16 or 32X32 blocks?

�– For 8X8, we have 64 threads per Block. Since each SM can take 
up to 768 threads there are 12 Blocks However each SM canup to 768 threads, there are 12 Blocks. However, each SM can 
only take up to 8 Blocks, only 512 threads will go into each SM!

F 16X16 h 256 h d Bl k Si h SM�– For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve full 
capacity unless other resource considerations overrule.

�– For 32X32, we have 1024 threads per Block. Not even one can fit 
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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+Recap 

Grid 

Block 0 Block 1 Block N-1 

0 1 2 255 0 1 2 255 0 1 2 255 

Streaming Processor 

Grid: Total number of threads 
Block: Organization for threads 
Streaming Processors: Resource allocation for Threads 
Grids, blocks, threads can have multiple dimensions 



+
Device and Resource Query 

n  How to find device configurations? 

n  How many SMs? How many threads per block? 

cudaDeviceProp dev_prop; 
for(i = 0; I < dev_count; i++){ 

 cudaGetDeviceProperties(&dev_prop, i); 
 //decide if device has sufficient resources 

} 
 
// cudaDeviceProp is a C structure 





+



+



+



+ CUDA Memories 

Device 0 
 

Device 1 
 

Host cudaMemcpy() 

Memory 

Memory 

Memory 

We need to assign memory in the device (GPU) for the 
Variables that we wish to use in the device 

float *h_A, *h_B, *h_C 
malloc(); // assign memory 
free();   // free memory 

float *d_A, *d_B, *d_C 
cudaMalloc() 
cudaFree() 



+



+
Importance of Memory Access 
Efficiency 

for(int k = 0; k < Width; k++) 
 Pvalue += d_M[Row * Width + k] + d_N[k*Width + Col]  

Every iteration has 2 global memory access for one floating point addition and 
one floating point multiplication. 
Thus it has Compute to global memory access ratio (CGMA) is 1:1 
 
 
It has major performance implications: 
Eg: Memory Bandwidth: 200 GB/s 
Floating point size: 4 Bytes. Therefore 50 Gigs single precision operands/sec 
i.e. it will execute at the max 50 GFLOPS. 
 
Peak performance usually at 1500 GFLOPS (1.5 TFLOPS) 
Only way to get around this is to increase CGMA ratio i.e 
 
REDUCE MEMORY ACCESS 
 



+
Lets understand threads in detail 
n  Thread is a virtualized von Neuman processor 

n  In von Neuman model, code of program is stored in memory, 
PC keeps track of particular point of the program, IR has 
instructions, Registers and memory holds value of variables 
and data structure 



+
Processing Units and Threads 

n  Modern processors are designed to allow context switching, 
where multiple threads can time-share processor 

n  During context switch, intermediate values are saved in 
registers/memory 

n  GPUs allow multiple processors, single instruction i.e all 
processors execute same instructions. Hence, resource 
sharing between threads is important.  

n  The reason why threads are organized into blocks/warps 





















Tiled Matrix Multiplication 



Tiled Multiply
bx

0 1 2

�• Break up the execution of 
the kernel into phases so

Nd

tx
01 TILE_WIDTH-12

ID
TH

the kernel into phases so 
that the data accesses in 
each phase is focused on

TI
LE
_W
I

_W
ID
TH W
ID
TH

each phase is focused on 
one subset (tile) of Md and 
Nd

TI
LE
_

Nd
Md Pd

0

Pdsub

by ty 2
1
0

TILE_WIDTH-1
1

TI
LE
_W
ID
TH
E

W
ID
TH

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

_
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A Small Example: MultiplicationA Small Example: Multiplication
Nd1,0Nd0,0

Nd1,2

Nd1,1Nd0,1

Nd0,2

PdMdMdMd Md Pd Pd Pd

Nd0,3 Nd1,3

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd Pd PdPd

Pd3,1Pd2,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd0,3 Pd2,3 Pd3,3Pd1,3
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Tiling Size EffectsTiling Size Effects
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+
Points to Remember about CUDA 
Memory 

n  CUDA offers local memories/registers. Using these 
efficiently reduces access to global memory and improves 
performance. But it requires algorithm re-design 

n  Blocks, Registers have limited memory. If data exceeds this 
shared memory requirement, data has to be split into 
multiple pieces 

n  The ability to reason about hardware limitation when 
developing an application is key aspect of computational 
thinking 

n  Tiled algorithms often increase performance. But key to it is 
to exploit data locality 



+
Accelerating MATLAB with CUDA 

n  Massimiliano Fatica    

n  NVIDIA                 

n  mfatica@nvidia.com    

Won-Ki Jeong 
University of Utah              

wkjeong@cs.utah.edu   



+Overview 

MATLAB can be easily extended via MEX files  to take 
advantage of the computational power offered by the 
latest NVIDIA GPUs (GeForce 8800, Quadro FX5600, 
Tesla). 
    
Programming the GPU for computational purposes was a 
very cumbersome task before CUDA. Using CUDA, it is 
now very easy to achieve impressive speed-up with 
minimal effort.  
 
This work is a proof of concept that shows the feasibility 
and benefits of using this approach.  
 
 



+
MEX file 

n  Even though MATLAB is built on many well-optimized 
libraries, some functions can perform better when written 
in a compiled language (e.g. C and Fortran). 

n  MATLAB provides a convenient API for interfacing code 
written in C and FORTRAN to MATLAB functions with MEX 
files. 

n  MEX files could be used to exploit multi-core processors 
with OpenMP or threaded codes or like in this case to 
offload functions to the GPU. 



+
NVMEX   
n  Native MATLAB script cannot parse CUDA code 

n  New MATLAB script nvmex.m compiles CUDA code (.cu) to create MATLAB 
function files 

n  Syntax similar to original mex script: 

 

 >> nvmex –f nvmexopts.bat filename.cu –IC:\cuda\include 

   –LC:\cuda\lib -lcudart 

  

 Available for Windows and Linux from: 

 http://developer.nvidia.com/object/matlab_cuda.html 



+
Mex files for CUDA 
A typical mex file will perform the following steps: 

 
1. Convert from double to single precision 
2. Rearrange the data layout for complex data 
3. Allocate  memory on the GPU 
4. Transfer the data from the host to the GPU 
5. Perform computation on GPU (library, custom code) 
6. Transfer results from the GPU to the host 
7. Rearrange the data layout for complex data 
8. Convert from single to double 
9. Clean up memory and return results to MATLAB 

Some of these steps will go away with new versions of the library  
(2,7) and new hardware (1,8) 

 



+
CUDA MEX example 

/*Parse input, convert to single precision and to interleaved complex format */ 

 ….. 

/* Allocate array on the GPU */ 

  cufftComplex *rhs_complex_d; 

   cudaMalloc( (void **) &rhs_complex_d,sizeof(cufftComplex)*N*M); 

/* Copy input array in interleaved format to the GPU */ 

 cudaMemcpy( rhs_complex_d, input_single, sizeof(cufftComplex)*N*M,                      cudaMemcpyHostToDevice); 

/* Create plan for CUDA FFT  NB: transposing dimensions*/ 

 cufftPlan2d(&plan, N, M, CUFFT_C2C) ; 

/* Execute FFT on GPU */ 

 cufftExecC2C(plan, rhs_complex_d, rhs_complex_d, CUFFT_INVERSE) ; 

/* Copy result back to host */ 

  cudaMemcpy( input_single, rhs_complex_d, sizeof(cufftComplex)*N*M,                      cudaMemcpyDeviceToHost); 

/* Clean up memory and plan on the GPU */ 

   cufftDestroy(plan); cudaFree(rhs_complex_d); 

/*Convert back to double precision and to split complex format */ 

 …. 

 

Additional code in MEX file to handle CUDA 



+
Initial study 

n  Focus on 2D FFTs. 

n  FFT-based methods are often used in single precision   ( for 
example in image processing ) 

n  Mex files to overload MATLAB functions, no modification 
between the original MATLAB code and the accelerated one. 

 

n  Application selected for this study: 

 solution of the Euler equations in vorticity form using a pseudo-
spectral method. 



+
Implementation details: 

  
Case A)  FFT2.mex  and IFFT2.mex 

  
 Mex file in C with  CUDA FFT functions. 

 
 Standard mex script could be used. 

 
 Overall effort: few hours 

 
Case B) Szeta.mex: Vorticity source term written in CUDA 
 

 Mex file in CUDA with calls to CUDA FFT functions. 
 

 Small modifications necessary to handle files with a .cu suffix 
 

 Overall effort: ½ hour (starting from working mex file for 2D FFT) 



+Configuration 

Hardware: 
 

 AMD Opteron 250 with 4 GB of memory 
 

 NVIDIA GeForce 8800 GTX 
 

Software: 
 

 Windows XP and Microsoft VC8 compiler 
 

 RedHat Enterprise Linux 4 32 bit, gcc compiler 
 

 MATLAB R2006b  
 

 CUDA 1.0 



+
FFT2 performance 



+
Vorticity source term 

function S = Szeta(zeta,k,nu4)  

 

% Pseudospectral calculation of vorticity source term  

% S = -(- psi_y*zeta_x + psi_x*zeta_y) + nu4*del^4 zeta  

% on a square periodic domain, where zeta = psi_xx + psi_yy is an NxN matrix  

% of vorticity and k is vector of Fourier wavenumbers in each direction.  

% Output is an NxN matrix of S at all pseudospectral gridpoints  

 zetahat = fft2(zeta);  

 [KX KY] = meshgrid(k,k);  

% Matrix of (x,y) wavenumbers corresponding  

% to Fourier mode (m,n)  

 del2 = -(KX.^2 + KY.^2);  

 del2(1,1) = 1; % Set to nonzero to avoid division by zero when inverting  

% Laplacian to get psi  

 psihat = zetahat./del2;  

 dpsidx = real(ifft2(1i*KX.*psihat));  

 dpsidy = real(ifft2(1i*KY.*psihat));  

 dzetadx = real(ifft2(1i*KX.*zetahat));  

 dzetady = real(ifft2(1i*KY.*zetahat));  

 diff4 = real(ifft2(del2.^2.*zetahat));  

 S = -(-dpsidy.*dzetadx + dpsidx.*dzetady) - nu4*diff4;  

http://www.amath.washington.edu/courses/571-winter-2006/matlab/Szeta.m 



+Caveats 

 
The current CUDA FFT library only supports interleaved format for 
complex data while MATLAB stores all the real data followed by the 
imaginary data. 
 
Complex to complex  (C2C) transforms used 
 
The accelerated computations are not taking advantage of the 
symmetry of the transforms. 
 
The current GPU hardware only supports single precision (double 
precision will be available in the next generation GPU towards the 
end of the year). Conversion to/from single from/to double is 
consuming a significant portion of wall clock time.  
 
 



+Advection of an elliptic vortex 

 
 

MATLAB  
168 seconds 

MATLAB with CUDA 
(single precision FFTs) 
14.9 seconds (11x) 

256x256 mesh, 512 RK4 steps,  Linux,  MATLAB file 
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_vortex.m 



+Pseudo-spectral simulation of 2D Isotropic 
turbulence. 

 
 

MATLAB  
992 seconds 

MATLAB with CUDA 
(single precision FFTs) 
93 seconds 

512x512 mesh, 400 RK4 steps, Windows XP,  MATLAB file 
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m 



+

n  Power spectrum of vorticity is very sensitive to fine scales. Result 
from original MATLAB run and CUDA accelerated one are in 
excellent agreement 

MATLAB run CUDA accelerated MATLAB run  



Timing details 

Runtime 
Opteron 250 

Speed 
up 

Runtime 
Opteron 2210 

Speed 
up 

PCI-e Bandwidth: 
Host to/from device  

1135 MB/s 
1003 MB/s 

1483 MB/s 
1223 MB/s 

Standard MATLAB 8098 s 
 

9525s 

Overload FFT2 and IFFT2 4425 s 1.8x 4937s 1.9x 

Overload Szeta 735 s 
 

11.x 789s 12.X 

Overload Szeta , FFT2 and 
IFFT2 

577 s 
 

14.x 605s 15.7x 

1024x1024 mesh, 400 RK4 steps on Windows,  
2D isotropic turbulence 


