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+
Memory Model

float *h A, *h B, *h C float *d A, *d B, *d
malloc(); // assign memory cudaMalloc ()
free () ; // free memory cudaFree ()

We need to assign memory in the device (GPU) for the
Variables that we wish to use in the device



Memory Model

Kernel 0
> || WD || ¢ > < > Sequential
; ; ; <+ Kernels
Per-device
Global
Kernel 1
Memory
S S S S <>
Y

All the blocks within the device have access to global
memory of the device



4+ Grid, Block, Thread, Kernel..

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

CPU serial code
Gnd 0

GPU parallel kernel
KermnelA<<< nBIK, nTid >>>(args);

CPU serial code 5
Grid 1

GPU parallel kernel
KernelA<<< nBIK, nTid >>>(args);

All threads that are generated by a kernel during an invocation
FIGURE 3.2  are collectively called a grid

Execution of a CUDA program.



+Grid, Block, Thread, Kernel..

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

. . (Device) Grid
A grid consists

Of multiple bl“N | Block (0, 0) Block (1, 0)
Each block has finite N
Size (usually in

Increments of 32, r
Thread (1,0) |  Thread (0, 0)

since 32 threads form
2 warp). ’ ’
t t

Thread (1, 0)

Each block can execute- Thread (0, 0)
—>
many threads

Host




+Grid, Block, Thread, Kernel..

int 1 = threadIdx.x + blockDim.x * blockIdx.x;

Block O Block 1 Block N-1
ks [OIIz1 ] [CEBsy [ P53

Grid

v
Block = 1, Block Dimension = 256, Thread id = 2

int 1 = threadIdx.x + blockDim.x * blockIdx.x;
258 = 2 + 250 * 1




A more complete version of vecAdd()

__global
void wvecAddKernel (float* A, float* B, float* C, int n)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
if (1 < n)
Cl[i] = A[i] + BI[i];

—

Device

void vecAdd(float* h A, float* h B, float* h C, int n)
{

int size = n * sizeof(float);

float *A d, *B d, *C d;

cudaMalloc ((void**) &d A, size);
cudaMemcpy (d A, A, size, cudaMemcpyHostToDevice);
cudaMalloc ( (void**) &d B, size);
cudaMemcpy (d B, B, sizg, cudaMemcpyHostToDevice) ;
cudaMalloc ((void**) &d C, size);

Launching
the kernel

vecAddKernel <<< ceil (n/256.0), 256 >>> (dA, dB, dC, m)y+— code

cudaMemcpy (C, d C, size, cudaMemcpyDeviceToHost) ;

//Free device (GPU) memory
cudaFree (d A); cudaFree(d B); cudaFree(d C);

Host (CPU) code

CO



Kernel Memory Access
® Per-thread
3 <—> On-chip

eqisters I
& Thread
<« | el Eeie  Off-chip, uncached
® Per-block

Block e Shared . I(:)n-chip, small
Il . t
pmid Memory as

® Per-device

= Off chip, large
q> Global [
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+
Memory Spaces

m CPU and GPU have separate memory spaces
m Data is moved across PCle bus

m Use functions to allocate/set/copy memory on GPU
m Very similar to corresponding C functions

m Pointers are just addresses
m Can’ ttell from the pointer value whether the address is on CPU or GPU
m Must exercise care when dereferencing:
m Dereferencing CPU pointer on GPU will likely crash
m Same for vice versa



Data Parallel Execution Model

m Fine-grained, data-parallel threads are fundamental means of
parallel execution in CUDA

m Each thread uses a unique co-ordinate given by threadld
{x,v.2}

m We will now study
m Organization of threads
m Resource Assignment to threads
m Synchronization of threads
= Scheduling of threads in a grid



==

Threads and dimensions

Block IDs and Thread IDs

e Each thread uses IDs to
decide what data to work on
— Block ID: 1D or 2D —

Host

Device

Kernel
1

Grid 1

Block
(0, 0)

Block
(1,0)

— Thread ID: 1D, 2D, or 3D

 Simplifies memory
addressing when
processing
multidimensional data
— Image processing
— Solving PDEs on volumes

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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+ L
Organization

m Grid is a 3D array of blocks. Each block is a 3D array of

threads.

m The exact organization of a grid is determined by
configuration parameters <<< >>> of kernel launch
statement

m <<< No of Blocks in grid, Number of threads per block >>>

m E.g.if we have to execture 4096 threads
m dim3 dimBlock(128, 1, 1) = Create 1D grid of 128 blocks
m dim3 dimGrid(32, 1, 1) = each block has 32 threads
m vecAddKernel <<< dimBlock, dimGrid >>> ( ....);
m 128%32 = 4096



+ Multi-Dimensional Data
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==
Processing Multi-Dimensional Data

m The choice of 1D, 2D, 3D thread organization is done based
on the nature of data

m 1D data : vector manipulation
m 2D Data: Image processing

m 3D Data: MRI Scans



=
A- ZD Exa‘mple S blocks = 5x16 = 80 threads |I
< >

4 blocks
= 4x16
= 64 threads

16 x 16 blocks

2 unused
threads in
Y Y direction

4 unused threads in X direction

Process an image of size 76 x 62 pixels.
Block size: 16x16, Total blocks needed = 5x4 = 20

Goal : Double the value of each pixel



+A 2D Example |I
5 blocks = 5x16 = 80 threads
< >

4 blocks Image size
=4x16 76 x 62

= 64 threads

16 x 16
blocks

2 unused
v threadsin

4 unused threads in X direction Y direction

dim3 dimBlock(ceil (n/16.0), ceil(m/16.0), 1);
dim3 dimGrid(le, 16, 1);
pictureKernel<<< dimGrid, dimBlock>> (d Pin, d Pout, n, m)

gridDim.x = 5, gridDim.y = 4, blockDim.x = 16, blockDim.y = 16
Total number of threads generated = 76 x 62 = 4712



+
Picture Kernel Code

__global  void PictureKernel (float* d pin, float* d Pout, int m, int n) {

// Calculate the row number
int Row = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate the column number
int Col = blockIdx.x * blockDum.x + threadIdx.x;

//each thread computes one element of d Pout if in range
if( (Row < m) && (Col < n))
d Pout[Row*n + Col] = 2 * d Pin[Row*n + Col];

Source code of PictureKernel() showing 2D thread mapping to a data pattern



rows and cols
both in range

1if( (Row < m) && (Col < n))

Some rows out of range

Some cols
Out of range

Some rows
And cols out
Of range



==
Row Major indexing

index = row * width + col

2*4 +1 =9

Helpful in dynamic memory allocation.
Address are considered in continuous locations based on datatype
E.g.int = 4 bytes



+ Handling Data in 3D

Page 1-
red
infensity
vales

ITow

Addition dimension

Armay RGB
.-To.689 0.706 0.118 0.884 ...
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0.455 0.783 0.224 0.395 ... [0-9950.726 ...
0.021 0.500 0.311 0.123 ... Lt
1.000 1.000 0.867 0.051 ... -
1.000 0.945 0.998 0.893 ... ,P]_a_ne
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0.834 0.798 ...

0.902 0.867

Col

The concept easily extends in 3D. Just have to keep track of

int Plane = blockldx.z * blockDim.z + threaldx;

The linearized access to array P will be in the form

P[Plane * m * n + Row*n + Col]

Thus we have to keep track of 3 variables: Plane, row, col




+
Matrix Multiplication Example

K m
_> .
N X —
Y =

We will consider square matrices only for clarity

M



bx
. . . . . 0 1 2
Matrix Multiplication Using | | |
Multiple Blocks
Nd A
* Break-up Pd into tiles
 Each block calculates one 2
tile z
— Each thread calculates one
element
— Block size equal to tile size
_ Md Pd f
0
| Pdsub E E
by 1 E' E
TILE_WIDTH
2
P WIDTH e WIDTH

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
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Tile Width = Block width (difference betn book editions)
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+
Matrix Multiplication : Thread to Data
Mapping

~_global  void MatrixMulKernel (float* d M, float* d N, int m, int n) {

// Calculate the row number
int Row = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate the column number
int Col = blockIdx.x * blockDum.x + threadIdx.x;

//each thread computes one element of d Pout if in range
if( (Row < m) && (Col < n)){
float P value = 0;
// each thread computes one element of the block submatrix
for(int k =0; k < width; k++){
Pvalue += d M[Row * Width + k] * d N[k * Width + Col];

}
d P[Row * width + Col] = Pvalue;




Why thread to data maucpmg’P

Matrix Multiplication Using
MUItlple Blocks 012 Ttn)fE,WIDTH-1

Nd

» Break-up Pd into tiles

» Each block calculates one E
tile £
— Each thread calculates one
element
— Block size equal to tile size

Md Pd
0

Nao

b ] : 8
Y 1 ] i ;' z
= TILE_WIDTH-1 =

i DIA and Wen-mei W. Hwu, 2007-2009
Illinois, Urbana-

2

* Divide the computation in tiles/blocks.
 Some block dimensions might be better than others (remember our 76 x 62
image example ?)
* Find the optimal Block/Tile Sizes: “Autotuning” to gain maximum
performance gain
* E.g.if we wanted to process matrix of size 1000 x 1000
* #define BLOCK_SIZE 16 // will generate 64 x 64 blocks
* #define BLOCK_SIZE 32 // will generate 32 x 32 blocks
Which one to use of the above 2 configuration? (Determined by other
parameters as well (like number of streaming multiprocessors etc)



CUDA Thread Block

 All threads in a block execute the same
kernel program (SPMD)

* Programmer declares block:

CUDA Thread Block

— Block size 1 to 512 concurrent threads

— Block shape 1D, 2D, or 3D Thread Id #:
0123 .. m

— Block dimensions in threads

« Threads have thread id numbers within block

— Thread program uses thread id to select work
and address shared data

e Threads in the same block share data and
synchronize while doing their share of the
work

» Threads in different blocks cannot cooperate

— Each block can execute in any order relative
to other blocs!

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 15
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Thread Synchronization

m To ensure that all threads in a block have completed a phase
of their execution of the kernel before any of them can move
on to the next phase

m CUDA follows barrier synchronization: Wait till all threads
from the block have completed execution before context/
task switch



+ . L
Barrier Synchronization

Thread O > —>
Thread 1 = —
Thread 2 > S
> —

= >

Thread N > —>

Time Barrier

Time > Wiait till all the threads
complete the given task
before proceeding with
next operation




Device Runtime Component:
Synchronization Function

® void _ syncthreads();

® Synchronizes all threads in a block

® Once all threads have reached this point, execution
resumes normally

® Used to avoid RAW / WAR /| WAW hazards when accessing
shared

® Allowed in conditional code only if the conditional
is uniform across the entire thread block

© NVIDIA Corporation 2006




Host Synchronization

@® All kernel launches are asynchronous
® control returns to CPU immediately

® kernel executes after all previous CUDA calls have
completed

® cudaMemcpy() is synchronous
® control returns to CPU after copy completes

® copy starts after all previous CUDA calls have
completed

® cudaThreadSynchronize()

® blocks until all previous CUDA calls complete

<A NVIDIA




Host Synchronization Example

/I copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

Il execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

/I run independent CPU code
run_cpu_stuff();

Il copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

© 2008 NVIDIA Corporation. ((bz nvi Dl A




Thread Synchronization: Points to
understand

m CUDA allows thread synchronization within the block but not
across blocks

m This means blocks do not have time-dependency on one
another: Can be executed in any order

m This flexibility allows scalable implementations

m Enables execution of same code at wide range of speeds
(hence same code can be applied to different hardware) e.qg.
different wait times for resources

m The ability to execute the same application code on
hardware with a different number of execution resouces is
referred to as transparent scalability



Transparent Scalability

« Hardware is free to assign blocks to any
processor at any time

— A kernel scales across any number of
parallel processors

Block 0 Block 1

/ Block 2 Block 3 \
Block 0 Block 1 Block 4 Block 5
Block0 Block1 Block2 Block3
Block 6 Block 7 time

Block2 Block 3
Block4 Block5 Block6 Block7

Block4 Block 5 : .
= o Each block can execute in any order relative to other blocks.

Block 6 Block 7

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 16
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+Assigning Resources

(Device) Grid
A thread needs

resources: memory, Block (0, 0) Block (1, 0)

registers etc.

Thread (1, 0)

These resources hold
data/code for the thread

to execute Thread (0, 0)

Thread (1, 0)

T

Thread (0, 0)

T

Host




==
Executing thread blocks

SMs execute the
operations in a block

t0t1t2 ... tm | SMO0  SM1 £0t1 t2 .. tm .

B [ — NS | \ Shared memory contains data/
¥ o] W51 J'B_'I°°ks code for execution for all the
—1 : blocks within a SM

Blocks == == - Threads are assigned to Streaming
E * Multiprocessors in block granularity

HE BN — Up to 8 blocks to each SM as
resource allows
- . — SMin G80 can take up to 768 threads

* Could be 256 (threads/block) * 3
blocks
» Or 128 (threads/block) * 6 blocks, etc.

« Threads run concurrently
— SM maintains thread/block id #s

— SM manages/schedules thread
execution

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 17
ECE498AL, University of Illinois, Urbana-Champaign

Execution resources are organized into streaming multiprocessors SMs



Scheduling Blocks onto SMs

Streaming Multiprocessor

Thread Block 5

Thread Block 27

Thread Block 61

Thread Block 2001

e HW Schedules thread blocks onto available SMs
* No guarantee of ordering among thread blocks

*  HW will schedule thread blocks as soon as a previous thread block
finishes



Mapping of Thread Blocks

* Each thread block is mapped to one or more warps
* The hardware schedules each warp independently

TBNW1
Thread Block N (128 > TB N W2
threads) TB N W3

TBN W4

65



Thread Scheduling Example

» SM implements zero-overhead warp scheduling

— At any time, only one of the warps is executed by SM

— Warps whose next instruction has its inputs ready for
consumption are eligible for execution

— Eligible warps are selected for execution on a
prioritized scheduling policy

— All threads in a warp execute the same instruction
when selected

TB1, W1 slall—'
—TB2, W1 stall—————TB3, W2 stall——|
PoTe TB2 TB3 83 TB2 TBA TB1 TBA B3
. . L wi1 w1 w2 Wi w1 w2 w3 w2
Instruction: |1 i2:i3:i4i5:6[1:2|1:i2|1: 28 4|7 8|1:2|1:i2[3:4

—Time-» TB = Thread Block, W = Warp

66




+
Thread Scheduling

o Each Block is executed as Block 1 Warps Block 2 Warps Block 1 Warps
|
32-thread Warps t0tLt2 .. 31 t0tLt2.. 31 t0tLt2 .. 31
i . L. \\\\\\\\\\\ \\\\\\\\\\5 \\\\\\\\\\‘
— An implementation decision, = ) > )
not part of the CUDA | < S <
programming model
— Warps are scheduling units Streaming Multiprocessor
in SM [ instructionii ]
. If 3 blocks are assigned to an I Instruction Fetch/Dispatch |
SM and each block has 256

256/32 = 8 Warps
— There are 8 * 3 = 24 Warps

threads, how many Warps are
there in an SM?
— Each Block is divided into

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 18
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G80 Example: Thread Scheduling (Cont.)

« SM implements zero-overhead warp scheduling
— Warps whose next instruction has its operands ready
for consumption are eligible for execution
— Eligible Warps are selected for execution on a
prioritized scheduling policy
— All threads in a warp execute the same instruction
when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 19
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G80 Block Granularity Considerations

« For Matrix Multiplication using multiple blocks, should |
use 8X8, 16X16 or 32X32 blocks?

— For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

— For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

— For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 20
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+Recap

Block O Block 1
of1]2 [ k53

|

g

Streaming Processor

Block N-1
[ P53

Grid

Grid: Total number of threads
Block: Organization for threads

Streaming Processors: Resource allocation for Threads
Grids, blocks, threads can have multiple dimensions




Device and Resource Query

m How to find device configurations?

m How many SMs? How many threads per block?

cudabDeviceProp dev prop;
for(i = 0; I < dev_count; i++) {
cudaGetDeviceProperties (&dev_prop, 1);

//decide if device has sufficient resources

}

// cudaDeviceProp is a C structure



«->CH E] developer.download.nvidia.com/compute/cuda/4_1/rel/toolkit/docs/online/structcudaDeviceProp.html
[ ] Q [ ] [ ] (=)

cudaDeviceProp Struct Reference
[Data types used by CUDA Runtime]

Data Fields

int asyncEngineCount

int canMapHostMemory

int clockRate

int computeMode

int concurrentKernels

int deviceOverlap

int ECCEnabled

int integrated

int kernelExecTimeoutEnabled
int |2CacheSize

int major

int maxGridSize [3]

int maxSurfacelD

int maxSurfacelDLayered [2]
int maxSurface2D [2]

int maxSurface2DLayered [3]
int maxSurface3D [3]

int maxSurfaceCubemap

int maxSurfaceCubemapLayered [2]
int maxTexturelD

int maxTexturelDLayered [2]
int maxTexturelDLinear

int maxTexture2D [2]

int maxTexture2DGather [2]

int maxTexture2DLayered [3]
int maxTexture2DLinear [3]
int maxTexture3D [3]
int maxTextureCubemap
int maxTextureCubemapLayered [2]
int maxThreadsDim [3]
int maxThreadsPerBlock
int maxThreadsPerMultiProcessor
int memoryBusWidth
int memoryClockRate
size_t memPitch
int minor

int multiProcessorCount
lﬁﬁf name LZ250]

int pciBusID

int pciDevicelD

int pciDomainlD

int regsPerBlock
size_t sharedMemPerBlock
size_t surfaceAlignment

int tccDriver
size_t textureAlignment
size_t texturePitchAlignment
size_t totalConstMem
size_t totalGlobalMem

int unifiedAddressing

int warpSize




Device Management <X

NVIDIA

® CPU can query and select GPU devices
® cudaGetDeviceCount( int* count)
¢ cudaSetDevice( int device )
¢ cudaGetDevice( int *current_device )
® cudaGetDeviceProperties( cudaDeviceProp* prop,
int device)
cudaChooseDevice( int *device, cudaDeviceProp* prop )

® Multi-GPU setup:

® device 0 is used by default

® one CPU thread can control one GPU
® multiple CPU threads can control the same GPU

— calls are serialized by the driver

© NVIDIA ﬁﬂoﬂ 2008



Kepler GK110 supports the new CUDA Compute Capability 3.5. (For a brief overview of CUDA see
Appendix A - Quick Refresher on CUDA). The following table compares parameters of different Compute
Capabilities for Fermi and Kepler GPU architectures:

FERMI FERMI KEPLER KEPLER

GF100 GF104 GK104 GK110
Compute Capability 2.0 2.1 3.0 3.5
Threads / Warp 32 32 32 32
Max Warps / Multiprocessor 48 48 64 64
Max Threads / Multiprocessor 1536 1536 2048 2048
Max Thread Blocks / Multiprocessor 8 8 16 16
32-bit Registers / Multiprocessor 32768 32768 65536 65536
Max Registers / Thread 63 63 63 255
Max Threads / Thread Block 1024 1024 1024 1024
Shared Memory Size Configurations (bytes) 16K 16K 16K 16K
48K 48K 32K 32K
48K 48K
Max X Grid Dimension 2716-1 2716-1 27A32-1 | 2732-1
Hyper-Q No No No Yes
Dynamic Parallelism No No No Yes

Compute Capability of Fermi and Kepler GPUs




Specifications

Note: The below specifications represent this GPU as incorporated into NVIDIA's reference graphics card design.
Graphics card specifications may vary by Add-in-card manufacturer. Please refer to the Add-in-card
manufacturers' website for actual shipping specifications.

GTX 780 GPU Engine Specs:
CUDA Cores

Base Clock (MHz)

Boost Clock (MHz)

Texture Fill Rate (billion/sec)

GTX 780 Memory Specs:
Memory Speed

Standard Memory Config
Memory Interface

Memory Interface Width
Memory Bandwidth (GB/sec)

GTX 780 Support:
Important Technologies GPU Boost 2.0, PhysX, TXAA, NVIDIA G-SYNC-ready, SHIELD-ready

Other Supported Technologies 3D Vision, CUDA, DirectX 11, Adaptive VSync, FXAA,
3D Vision Surround, SLI-ready

OpenGL 43

Bus Support PCI Express 3.0

Certified for Windows 7, Windows 8, Yes
Windows Vista, or Windows XP

3D Vision Ready Yes
3D Gaming Yes
Blu Ray 3D Yes
3D Vision Live (Photos and Videos) Yes




+
CUDA Memories

float *h A, *h B, *h C float *d A, *d B, *d
malloc(); // assign memory cudaMalloc ()
free () ; // free memory cudaFree ()

We need to assign memory in the device (GPU) for the
Variables that we wish to use in the device



Hardware Implementation of CUDA
Memories

@ Each thread can:

® Read/write per-thread
registers

Block (0, 0) Block (1, 0)

Registers

Thread (1, 0)

Shared Memory Shared Memory
® Read/write per-thread
local memory Registers Registers Registers
® Read/write per-block
shared memory Thread (0, 0) Thread (1,0) Thread (0, 0)

® Read/write per-grid
global memory

Global Memory

® Read/only per-grid I
constant memory Constant Memory

© 2008 NVIDIA Corporation




+
Importance of Memory Access

Efficiency

for(int k = 0; k < Width; k++)
Pvalue += d M[Row * Width + k] + d N[k*Width + Col]

Every iteration has 2 global memory access for one floating point addition and
one floating point multiplication.

Thus it has Compute to global memory access ratio (CGMA) is 1:1

It has major performance implications:
Eg: Memory Bandwidth: 200 GB/s

Floating point size: 4 Bytes. Therefore 50 Gigs single precision operands/sec
i.e. it will execute at the max 50 GFLOPS.

Peak performance usually at 1500 GFLOPS (1.5 TFLOPS)
Only way to get around this is to increase CGMA ratio i.e

REDUCE MEMORY ACCESS



+
Lets understand threads in detail

m Thread is a virtualized von Neuman processor

m In von Neuman model, code of program is stored in memory,
PC keeps track of particular point of the program, IR has
instructions, Registers and memory holds value of variables
and data structure

MEMORY
INPUT | OUTPUT
Keyboard : i
Mosse | i | PROCESSING UNIT Poer
Scanner LED
Disk C D aw! Disk

A =

CONTROL UNIT
e




Processing Units and Threads

m Modern processors are designed to allow context switching,
where multiple threads can time-share processor

m During context switch, intermediate values are saved in
registers/memory

m GPUs allow multiple processors, single instruction i.e all
processors execute same instructions. Hence, resource
sharing between threads is important.

m The reason why threads are organized into blocks/warps



CUDA Variable Type Qualifiers <3

NVIDIA

Variable declaration Memory Scope | Lifetime
int var; register thread thread
int array var([10]; local thread thread

__shared int shared var; shared block block
__device__  int global_var; global grid | application
__constant___ int constant var; constant grid | application

@ “automatic” scalar variables without qualifier reside
In a register
® compiler will spill to thread local memory
@ “automatic” array variables without qualifier reside
in thread-local memory

© 2008 NVIDIA Corporation




CUDA Variable Type Performance >

NVIDIA

Variable declaration Memory Penalty
int var; register 1X
int array var[10]; local

__shared  int shared var; shared 1X
__device  int global_var; global
__constant__ int constant_var; constant 1X

@ scalar variables reside in fast, on-chip registers
@ shared variables reside in fast, on-chip memories

® thread-local arrays & global variables reside in
uncached off-chip memory

@ constant variables reside in cached off-chip memory

© 2008 NVIDIA Corporation




A Common Programming Strategy >

NVIDIA

® Global memory resides in device memory (DRAM)
® Much slower access than shared memory
® Tile data to take advantage of fast shared memory:

® Generalize from adjacent difference
example

® Divide and conquer

© 2008 NVIDIA Corporation



A Common Programming Strategy >

NVIDIA

® Partition data into subsets that fit into shared memory

© 2008 NVIDIA Corporation



A Common Programming Strategy >

NVIDIA

$388]33853

$355

® Handle each data subset with one thread block




A Common Programming Strategy >

NVIDIA

® Load the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism

© 2008 NVIDIA Corporation




A Common Programming Strategy >

NVIDIA

XK | X1 X

$385133853

® Perform the computation on the subset from shared
memory

$355

© 2008 NVIDIA Corporation



® Copy the result from shared memory back to global
memory

© 2008 NVIDIA Corporation



A Common Programming Strategy <3

NVIDIA

e Carefully partition data according to access patterns
@ Read-only & constant memory (fast)

® R/W & shared within block & shared  memory
(fast)

® R/W within each thread = registers (fast)

® Indexed R/W within each thread = local memory
(slow)

@ R/W inputs/results @ cudaMalloc‘ed global memory
(slow)

© 2008 NVIDIA Corporation
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Tiled Matrix Multiplication

Phase 1 Phase 2
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A Small Example: Multiplication

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign
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Tiling Size Effects
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© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECEA408, University of Illinois, Urbana Champaign




__global__voidMatrixMulKernel(float*Md, float* Nd, float* Pd, int Width)
{

1. __shared__ float MAS[TILE_WIDTH]JLTILE_WIDTH];

2. __shared__float Nds[TILE_WIDTH]JLTILE_WIDTH];

3. intbx=~Dtlockldx.x; int by =blockldx.y;
4, dnt tx=threadldx.x; int ty = threadldx.y;

£/ Tdentify the row and column of the Pd element Lo work on
5. dint Row=by * TILE_WIDTH + ty:
6. int Col =bx *TILE WIDTH + tx;

/. float Pvalue=0;
/1 Loop over the Md and Nd tiles required to compute the Pd element
g, forintm=0; m<Width/TILE WIDTH; ++m) |

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[tyJ[tx] =Md[Row*Width + (m*TILE_WIDTH + ©tx)];
10. Nds[ty J[tx] =Nd[{m*TILE_WIDTH + ty}*Width + Col];
11. _syncthreads(}):

12. for (int k=0; kK <TILE_WIDTH; ++k)
13. Pvalue+=Mds[tyl[k] * NdsLk][Ltx];
14. _syncthreads(});

}
15. Pd[Row*Width + Col] =Pvalue;:
!



Points to Remember about CUDA
Memory

m CUDA offers local memories/registers. Using these
efficiently reduces access to global memory and improves
performance. But it requires algorithm re-design

m Blocks, Registers have limited memory. If data exceeds this
shared memory requirement, data has to be split into
multiple pieces

m The ability to reason about hardware limitation when

developing an application is key aspect of computational
thinking

m Tiled algorithms often increase performance. But key to it is
to exploit data locality



Accelerating MATLAB with CUDA
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Overview

MATLAB can be easily extended via MEX files to take
advantage of the computational power offered by the
latest NVIDIA GPUs (GeForce 8800, Quadro FX5600,
Tesla).

Programming the GPU for computational purposes was a
very cumbersome task before CUDA. Using CUDA, it is
Nnow very easy to achieve impressive speed-up with
minimal effort.

This work is a proof of concept that shows the feasibility
and benefits of using this approach.



+ .
MEX file

m  Even though MATLAB is built on many well-optimized
libraries, some functions can perform better when written
in a compiled language (e.g. C and Fortran).

m MATLAB provides a convenient API for interfacing code
written in C and FORTRAN to MATLAB functions with MEX
files.

m MEX files could be used to exploit multi-core processors
with OpenMP or threaded codes or like in this case to
offload functions to the GPU.



! NVMEX
m Native MATLAB script cannot parse CUDA code

m New MATLAB script nvmex.m compiles CUDA code (.cu) to create MATLAB
function files

m Syntax similar to original mex script:

>> nvmex —f nvmexopts.bat filename.cu -IC:\cuda\include

-LC:\cuda\lib -lcudart

Available for Windows and Linux from:

http://developer.nvidia.com/object/matlab_cuda.html



+
Mex files for CUDA

A typical mex file will perform the following steps:

1 .Convert from double to single precision
2.Rearrange the data layout for complex data
3.Allocate memory on the GPU

4 Transfer the data from the host to the GPU
5.Perform computation on GPU (library, custom code)
6.Transfer results from the GPU to the host
1.Rearrange the data layout for complex data
8.Convert from single to double

9.Clean up memory and return results to MATLAB

Some of these steps will go away with new versions of the library
(2,7) and new hardware (1,8)



CUDA MEX example

Additional code in MEX file to handle CUDA

/#Parse input, convert to single precision and to interleaved complex format */

/* Rllocate array on the GPU */

cufftComplex *rhs_complex_d;

cudaMalloc( (void **) &rhs_complex_d,sizeof(cufftComplex)*N*M);

/% Copy input array in interleaved format to the GPU */

cudaMemepy( ths_complex_d, input_single, sizeof(cufftComplex)*N*M, cudaMemcpyHostToDevice);

/* Create plan for CUDA FFT NB: transposing dimensions*/

cufftPlan2d(&plan, N, M, CUFFT_C2C) ;

/% Execute FFT on GPU */

cufftExecC2C (plan, rhs_complex_d, rhs_complex_d, CUFFT_INVERSE) ;

/% Copy result back to host */

cudaMemepy( input_single, rhs_complex_d, sizeof(cufftComplex) *N*M, cudaMemcpyDeviceToHost);

/# Clean up memory and plan on the GPU */

cufftDestroy(plan); cudaFree(rhs_complex_d);

/*Convert back to double precision and to split complex format */



Initial study

m Focus on 2D FFTs.

m FFT-based methods are often used in single precision ( for
example in image processing )

m Mex files to overload MATLAB functions, no modification
between the original MATLAB code and the accelerated one.

m Application selected for this study:

solution of the Euler equations in vorticity form using a pseudo-
spectral method.



+
Implementation details:

Case A) FFT2.mex and IFFT2.mex
Mex file in C with CUDA FFT functions.
Standard mex script could be used.
Overall effort: few hours
Case B) Szeta.mex: Vorticity source term written in CUDA
Mex file in CUDA with calls to CUDA FFT functions.
Small modifications necessary to handle files with a .cu suffix

Overall effort: /2 hour (starting from working mex file for 2D FFT)



Configuration

Hardware:

AMD Opteron 250 with 4 GB of memory

NVIDIA GeForce 8800 GTX
Software:

Windows XP and Microsoft VC8 compiler

RedHat Enterprise Linux 4 32 bit, gcc compiler

MATLAB R2006b

CUDA 1.0



FFT2 performance

2D FFT on complex data
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Vorticity source term

http://www.amath.washington.edu/courses/571-winter-2006/matlab/Sze

function § = Szeta(zeta k,nud)

% Pseudospectral calculation of vorticity source term

%S = -(- psi_y*zeta_x + psi_x*zeta_y) + nud*delr zeta

% on a square periodic domain, where zeta = psi_xx + psi_yy is an NxN matrix

% of vorticity and k is vector of Fourier wavenumbers in each direction.

% Output is an NxN matrix of § at all pseudospectral gridpoints

zetahat = fft2(zeta);

[KX KY] = meshgrid(k k);

% Matrix of (x,y) wavenumbers corresponding

% to Fourier mode (m,n)

del2 = -(KX.A2 + KY.A2);

del2(1,1) = 1; % Set to nonzero to avoid division by zero when inverting

% Laplacian to get psi

psihat = zetahat./del2;

dpsidx = real(ifft2(1i*KX.*psihat));

dpsidy = real(ifft2(1i*KY. *psihat));



€aveats

The current CUDA FFT library only supports interleaved format
complex data while MATLAB stores all the real data followed by the
imaginary data.

Complex to complex (C2C) transforms used

The accelerated computations are not taking advantage of the
symmetry of the transforms.

The current GPU hardware only supports single precision (double
precision will be available in the next generation GPU towards the
end of the year). Conversion to/from single from/to double is
consuming a significant portion of wall clock time.



‘Advection of an elliptic vortex

256x256 mesh, 512 RK4 steps, Linux, MATLAB file
http://www.amath.washington.edu/courses/57 1-winter-2006/matlab/FS |
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‘Pseudo-spectral simulation of 2D Isotropic
turbulence.

512x512 mesh, 400 RK4 steps, Windows XP, MATLAB file

http://www.amath.washington.edu/courses/57 1-winter-2006/matlab/FS_|
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m Power spectrum of vorticity is very sensitive to fine scales. Res
from original MATLAB run and CUDA accelerated one are in
excellent agreement

Vorticity power spectrum

Vorticity power spectrum
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Timing details

1024x1024 mesh, 400 RK4 steps on Windows,
2D isotropic turbulence

Runtime | Speed Runtime | Speed
Opteron 250 up Opteron 2210 up
PCl-e Bandwidth: 1135 MB/s 1483 MB/s
Host to/from device 1003 MB/s 1223 MB/s
Standard MATLAB 8098 s 9525s
Overload FFT2 and IFFT2 [4425 s 1.8x 4937s 1.9x
Overload Szeta 735 s 11.x 789s 12.X
Overload Szeta, FFT2 and | 577 s 14.x 605s 15.7x
IFFT2




