
+

Data Parallel Execution
and CUDA Memories
Abhijit Bendale
03/11/2014

© 2008 NVIDIA Corporation.

CUDA Software Development

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX)

CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
math.h, FFT, BLAS, …

CUDA
Driver

Profiler Standard C Compiler

GPU CPU

Overvie
w

© NVIDIA Corporation 2011

Simple Processing Flow

1. Copy input data from CPU memory to GPU
memory

PCI Bus

© NVIDIA Corporation 2011

Simple Processing Flow

1. Copy input data from CPU memory to GPU
memory

2. Load GPU code and execute it,
caching data on chip for performance

PCI Bus

© NVIDIA Corporation 2011

Simple Processing Flow

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

PCI Bus

+ Memory Model

Device 0

Device 1

Host cudaMemcpy()

Memory

Memory

Memory

We need to assign memory in the device (GPU) for the
Variables that we wish to use in the device

float *h_A, *h_B, *h_C
malloc(); // assign memory
free(); // free memory

float *d_A, *d_B, *d_C
cudaMalloc()
cudaFree()

+ Memory Model

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

All the blocks within the device have access to global
memory of the device

+Grid, Block, Thread, Kernel..

 int i = threadIdx.x + blockDim.x * blockIdx.x;

All threads that are generated by a kernel during an invocation
are collectively called a grid

+Grid, Block, Thread, Kernel..
 int i = threadIdx.x + blockDim.x * blockIdx.x;

A grid consists
Of multiple blocks.
Each block has finite
Size (usually in
Increments of 32,
since 32 threads form
a warp).

Each block can execute
many threads

+Grid, Block, Thread, Kernel..
 int i = threadIdx.x + blockDim.x * blockIdx.x;

Grid

Block 0 Block 1 Block N-1

0 1 2 255 0 1 2 255 0 1 2 255

Block = 1, Block Dimension = 256, Thread id = 2

 int i = threadIdx.x + blockDim.x * blockIdx.x;
 258 = 2 + 256 * 1

+
A more complete version of vecAdd()

__global__
void vecAddKernel(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;

 if (i < n)
 C[i] = A[i] + B[i];

}

void vecAdd(float* h_A, float* h_B, float* h_C, int n)
{

 int size = n * sizeof(float);
 float *A_d, *B_d, *C_d;

 cudaMalloc((void**) &d_A, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void**) &d_B, size);
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
 cudaMalloc((void**) &d_C, size);

 vecAddKernel <<< ceil(n/256.0), 256 >>> (d_A, d_B, d_C, n);

 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

 //Free device (GPU) memory
 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);

}

Launching
the kernel
code

Device (GPU) code

Host (CPU) code

+

© 2008 NVIDIA Corporation.

Kernel Memory Access

Per-thread

Per-block

Per-device

Thread
Registers

Local Memory

Shared
Memory

Block

...Kernel 0

...Kernel 1

Global
Memory

T
im
e

On-chip

Off-chip, uncached

• On-chip, small

• Fast

• Off-chip, large

• Uncached

• Persistent across
kernel launches

• Kernel I/O

Basics

+ Memory Spaces
n  CPU and GPU have separate memory spaces

n  Data is moved across PCIe bus
n  Use functions to allocate/set/copy memory on GPU

n  Very similar to corresponding C functions

n  Pointers are just addresses
n  Can’t tell from the pointer value whether the address is on CPU or GPU
n  Must exercise care when dereferencing:

n  Dereferencing CPU pointer on GPU will likely crash
n  Same for vice versa

+
Data Parallel Execution Model

n  Fine-grained, data-parallel threads are fundamental means of
parallel execution in CUDA

n  Each thread uses a unique co-ordinate given by threadId
{x,y,z}

n  We will now study
n  Organization of threads

n  Resource Assignment to threads

n  Synchronization of threads

n  Scheduling of threads in a grid

+

Block IDs and Thread IDs

Host Device

Block IDs and Thread IDs

�• Each thread uses IDs to
Kernel

1

Grid 1

Block
(0, 0)

Block
(1, 0)

Block Block

Each thread uses IDs to
decide what data to work on
�– Block ID: 1D or 2D
�– Thread ID: 1D, 2D, or 3D

Kernel
2

(0, 1) (1, 1)

Grid 2

, ,

�• Simplifies memory
addressing when

Block (1, 1)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

addressing when
processing
multidimensional data
�– Image processing

Courtesy: NDVIA

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)�– Solving PDEs on volumes

�– �…

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 9

Threads and dimensions

+
Organization

n  Grid is a 3D array of blocks. Each block is a 3D array of
threads.

n  The exact organization of a grid is determined by
configuration parameters <<< >>> of kernel launch
statement

n  <<< No of Blocks in grid, Number of threads per block >>>

n  E.g. if we have to execture 4096 threads
n  dim3 dimBlock(128, 1, 1) à Create 1D grid of 128 blocks
n  dim3 dimGrid(32, 1, 1) à each block has 32 threads
n  vecAddKernel <<< dimBlock, dimGrid >>> (….);
n  128*32 = 4096

+ Multi-Dimensional Data

+
Processing Multi-Dimensional Data

n  The choice of 1D, 2D, 3D thread organization is done based
on the nature of data

n  1D data : vector manipulation

n  2D Data: Image processing

n  3D Data: MRI Scans

+
A 2D Example

16 x 16 blocks

Process an image of size 76 x 62 pixels.
Block size: 16x16, Total blocks needed = 5x4 = 20

5 blocks = 5x16 = 80 threads

4 blocks
= 4x16
= 64 threads

2 unused
threads in
Y direction

4 unused threads in X direction

Goal : Double the value of each pixel

+ A 2D Example

dim3 dimBlock(ceil(n/16.0), ceil(m/16.0), 1);
dim3 dimGrid(16, 16, 1);
pictureKernel<<< dimGrid, dimBlock>> (d_Pin, d_Pout, n, m)

16 x 16
blocks

5 blocks = 5x16 = 80 threads

4 blocks
= 4x16
= 64 threads

2 unused
threads in
Y direction 4 unused threads in X direction

gridDim.x = 5, gridDim.y = 4, blockDim.x = 16, blockDim.y = 16
Total number of threads generated = 76 x 62 = 4712

Image size
76 x 62

+
Picture Kernel Code

__global__ void PictureKernel(float* d_pin, float* d_Pout, int m, int n){

 // Calculate the row number
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column number
 int Col = blockIdx.x * blockDum.x + threadIdx.x;

 //each thread computes one element of d_Pout if in range
 if((Row < m) && (Col < n))
 d_Pout[Row*n + Col] = 2 * d_Pin[Row*n + Col];

}

Source code of PictureKernel() showing 2D thread mapping to a data pattern

+

2 1

3 4

 if((Row < m) && (Col < n))

Some cols
Out of range

Some rows
And cols out
Of range

Some rows out of range

rows and cols
both in range

+
Row Major indexing

index = row * width + col

2*4 + 1 = 9

Helpful in dynamic memory allocation.
Address are considered in continuous locations based on datatype
E.g. int = 4 bytes

+ Handling Data in 3D

The concept easily extends in 3D. Just have to keep track of
Addition dimension

int Plane = blockIdx.z * blockDim.z + threaIdx;

The linearized access to array P will be in the form
P[Plane * m * n + Row*n + Col]

Thus we have to keep track of 3 variables: Plane, row, col

Plane

Col

row

+
Matrix Multiplication Example

We will consider square matrices only for clarity

M N

bx

tx

0 1 2
Matrix Multiplication Using
M lti l Bl k

Nd

01 TILE_WIDTH-12Multiple Blocks

�• Break-up Pd into tiles

W
ID
T
H�• Each block calculates one

tile
�– Each thread calculates one

element
�– Block size equal to tile size

Md Pd

Pd b1
0

0

T
H
E

HPdsub

TILE_WIDTH

ty 2
1

TILE_WIDTH-1

by 1

T
IL
E
_W
ID

W
ID
T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 10

_

WIDTHWIDTH
2

Tile Width = Block width (difference betn book editions)

+
Matrix Multiplication : Thread to Data
Mapping

__global__ void MatrixMulKernel(float* d_M, float* d_N, int m, int n){

 // Calculate the row number
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column number
 int Col = blockIdx.x * blockDum.x + threadIdx.x;

 //each thread computes one element of d_Pout if in range
 if((Row < m) && (Col < n)){
 float P_value = 0;
 // each thread computes one element of the block submatrix
 for(int k =0; k < width; k++){
 Pvalue += d_M[Row * Width + k] * d_N[k * Width + Col];
 }
 }
 d_P[Row * width + Col] = Pvalue;

}

+
Why thread to data mapping?

bx

tx

0 1 2
Matrix Multiplication Using
M lti l Bl k

Nd

01 TILE_WIDTH-12Multiple Blocks

�• Break-up Pd into tiles

W
ID
T
H�• Each block calculates one

tile
�– Each thread calculates one

element
�– Block size equal to tile size

Md Pd

Pd b1
0

0

T
H
E

HPdsub

TILE_WIDTH

ty 2
1

TILE_WIDTH-1

by 1

T
IL
E
_W
ID

W
ID
T
H

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 10

_

WIDTHWIDTH
2

•  Divide the computation in tiles/blocks.
•  Some block dimensions might be better than others (remember our 76 x 62

image example ?)
•  Find the optimal Block/Tile Sizes: “Autotuning” to gain maximum

performance gain
•  E.g. if we wanted to process matrix of size 1000 x 1000

•  #define BLOCK_SIZE 16 // will generate 64 x 64 blocks
•  #define BLOCK_SIZE 32 // will generate 32 x 32 blocks

Which one to use of the above 2 configuration? (Determined by other
parameters as well (like number of streaming multiprocessors etc)

CUDA Thread Block

�• All threads in a block execute the same
kernel program (SPMD)
Programmer declares block

CUDA Thread Block

�• Programmer declares block:
�– Block size 1 to 512 concurrent threads
�– Block shape 1D, 2D, or 3D
�– Block dimensions in threads

Thread Id #:
0 1 2 3 … m �– Block dimensions in threads

�• Threads have thread id numbers within block
�– Thread program uses thread id to select work

and address shared data Thread program

�• Threads in the same block share data and
synchronize while doing their share of the

k

Thread program

work
�• Threads in different blocks cannot cooperate

�– Each block can execute in any order relative
to other blocs!

Courtesy: John Nickolls,
NVIDIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

15

to other blocs!

+
Thread Synchronization

n  To ensure that all threads in a block have completed a phase
of their execution of the kernel before any of them can move
on to the next phase

n  CUDA follows barrier synchronization: Wait till all threads
from the block have completed execution before context/
task switch

+
Barrier Synchronization

Thread 0

Thread 1

Thread 2

:

Thread N

Time Wait till all the threads
complete the given task
before proceeding with
next operation

Time Barrier

© NVIDIA Corporation 2006 29

Device Runtime Component:
Synchronization Function

void __syncthreads();

Synchronizes all threads in a block

Once all threads have reached this point, execution
resumes normally

Used to avoid RAW / WAR / WAW hazards when accessing
shared

Allowed in conditional code only if the conditional
is uniform across the entire thread block

Basics

© 2008 NVIDIA Corporation.

Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately

kernel executes after all previous CUDA calls have
completed

cudaMemcpy() is synchronous
control returns to CPU after copy completes

copy starts after all previous CUDA calls have
completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

Basics

© 2008 NVIDIA Corporation.

Host Synchronization Example

// copy data from host to device

cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel

inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code

run_cpu_stuff();

// copy data from device back to host

cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);

Basics

+
Thread Synchronization: Points to
understand

n  CUDA allows thread synchronization within the block but not
across blocks

n  This means blocks do not have time-dependency on one
another: Can be executed in any order

n  This flexibility allows scalable implementations

n  Enables execution of same code at wide range of speeds
(hence same code can be applied to different hardware) e.g.
different wait times for resources

n  The ability to execute the same application code on
hardware with a different number of execution resouces is
referred to as transparent scalability

Transparent Scalability
�• Hardware is free to assign blocks to any

processor at any timeprocessor at any time
�– A kernel scales across any number of

parallel processorsparallel processors
Device Kernel grid

Block 0 Block 1
Device

Block 0 Block 1

Block 2 Block 3

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7 Block 0 Block 1 Block 2 Block 3
time

Block 2 Block 3

Block 4 Block 5

Block 4 Block 5 Block 6 Block 7

Each block can execute in any order relative to other blocks.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

16

Block 6 Block 7

+Assigning Resources

A thread needs
resources: memory,
registers etc.

These resources hold
data/code for the thread
to execute

+
Executing thread blocks

G80 Example: Executing Thread Blocks

t0 t1 t2 … tm

MT IU MT IU

t0 t1 t2 … tm

Blocks

SM 1SM 0

�• Threads are assigned to Streaming Blocks

SP SP

Multiprocessors in block granularity
�– Up to 8 blocks to each SM as

resource allowsShared
Memory

Shared
Memory

�– SM in G80 can take up to 768 threads
�• Could be 256 (threads/block) * 3

blocks
�• Or 128 (threads/block) * 6 blocks etc

y y

�• Or 128 (threads/block) 6 blocks, etc.

�• Threads run concurrently
�– SM maintains thread/block id #s

SM / h d l h d

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

17

�– SM manages/schedules thread
execution

Execution resources are organized into streaming multiprocessors SMs

SMs execute the
operations in a block

Shared memory contains data/
code for execution for all the
blocks within a SM

+

Scheduling Blocks onto SMsg

�• HW Schedules thread blocks onto available SMs
�• No guarantee of ordering among thread blocks
�• HW will schedule thread blocks as soon as a previous thread block

finishes
64

+

Mapping of Thread BlocksMapping of Thread Blocks

�• Each thread block is mapped to one or more warpsac ead b oc s apped o o e o o e a ps
�• The hardware schedules each warp independently

TB N W1

Thread Block N (128
threads)

TB N W2
TB NW3
TB NW4

65

+

Thread Scheduling Example
�• SM implements zero-overhead warp scheduling

�– At any time, only one of the warps is executed by SM
�– Warps whose next instruction has its inputs ready forWarps whose next instruction has its inputs ready for

consumption are eligible for execution
�– Eligible warps are selected for execution on a

prioritized scheduling policyprioritized scheduling policy
�– All threads in a warp execute the same instruction

when selected

66

+
Thread Scheduling

G80 Example: Thread Scheduling

�• Each Block is executed as
32 thread Warps

… …Block 1 Warps Block 2 Warps …Block 1 Warps

32-thread Warps
�– An implementation decision,

not part of the CUDA
programming model

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

…
t0 t1 t2 … t31

p g g
�– Warps are scheduling units

in SM
�• If 3 blocks are assigned to an Instruction Fetch/Dispatch

Instruction L1
Streaming Multiprocessor

g
SM and each block has 256
threads, how many Warps are
there in an SM? SP

SP

SP

SP

Shared Memory

�– Each Block is divided into
256/32 = 8 Warps

�– There are 8 * 3 = 24 Warps
SP

SP
SFU

SP

SP
SFU

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

18

+

G80 Example: Thread Scheduling (Cont.)

�• SM implements zero-overhead warp schedulingSM implements zero overhead warp scheduling
�– Warps whose next instruction has its operands ready

for consumption are eligible for execution
�– Eligible Warps are selected for execution on a

prioritized scheduling policy
�– All threads in a warp execute the same instructionAll threads in a warp execute the same instruction

when selected

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

19

+

G80 Block Granularity Considerations

�• For Matrix Multiplication using multiple blocks, should I
use 8X8 16X16 or 32X32 blocks?use 8X8, 16X16 or 32X32 blocks?

�– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads there are 12 Blocks However each SM canup to 768 threads, there are 12 Blocks. However, each SM can
only take up to 8 Blocks, only 512 threads will go into each SM!

F 16X16 h 256 h d Bl k Si h SM�– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve full
capacity unless other resource considerations overrule.

�– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign

20

+Recap

Grid

Block 0 Block 1 Block N-1

0 1 2 255 0 1 2 255 0 1 2 255

Streaming Processor

Grid: Total number of threads
Block: Organization for threads
Streaming Processors: Resource allocation for Threads
Grids, blocks, threads can have multiple dimensions

+
Device and Resource Query

n  How to find device configurations?

n  How many SMs? How many threads per block?

cudaDeviceProp dev_prop;
for(i = 0; I < dev_count; i++){

 cudaGetDeviceProperties(&dev_prop, i);
 //decide if device has sufficient resources

}

// cudaDeviceProp is a C structure

+

+

+

+ CUDA Memories

Device 0

Device 1

Host cudaMemcpy()

Memory

Memory

Memory

We need to assign memory in the device (GPU) for the
Variables that we wish to use in the device

float *h_A, *h_B, *h_C
malloc(); // assign memory
free(); // free memory

float *d_A, *d_B, *d_C
cudaMalloc()
cudaFree()

+

+
Importance of Memory Access
Efficiency

for(int k = 0; k < Width; k++)
 Pvalue += d_M[Row * Width + k] + d_N[k*Width + Col]

Every iteration has 2 global memory access for one floating point addition and
one floating point multiplication.
Thus it has Compute to global memory access ratio (CGMA) is 1:1

It has major performance implications:
Eg: Memory Bandwidth: 200 GB/s
Floating point size: 4 Bytes. Therefore 50 Gigs single precision operands/sec
i.e. it will execute at the max 50 GFLOPS.

Peak performance usually at 1500 GFLOPS (1.5 TFLOPS)
Only way to get around this is to increase CGMA ratio i.e

REDUCE MEMORY ACCESS

+
Lets understand threads in detail
n  Thread is a virtualized von Neuman processor

n  In von Neuman model, code of program is stored in memory,
PC keeps track of particular point of the program, IR has
instructions, Registers and memory holds value of variables
and data structure

+
Processing Units and Threads

n  Modern processors are designed to allow context switching,
where multiple threads can time-share processor

n  During context switch, intermediate values are saved in
registers/memory

n  GPUs allow multiple processors, single instruction i.e all
processors execute same instructions. Hence, resource
sharing between threads is important.

n  The reason why threads are organized into blocks/warps

Tiled Matrix Multiplication

Tiled Multiply
bx

0 1 2

�• Break up the execution of
the kernel into phases so

Nd

tx
01 TILE_WIDTH-12

ID
TH

the kernel into phases so
that the data accesses in
each phase is focused on

TI
LE
_W
I

_W
ID
TH W
ID
TH

each phase is focused on
one subset (tile) of Md and
Nd

TI
LE
_

Nd
Md Pd

0

Pdsub

by ty 2
1
0

TILE_WIDTH-1
1

TI
LE
_W
ID
TH
E

W
ID
TH

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

_

2

A Small Example: MultiplicationA Small Example: Multiplication
Nd1,0Nd0,0

Nd1,2

Nd1,1Nd0,1

Nd0,2

PdMdMdMd Md Pd Pd Pd

Nd0,3 Nd1,3

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0 Pd3,0

Pd1,1

Pd Pd PdPd

Pd3,1Pd2,1

Pd0,2 Pd2,2 Pd3,2Pd1,2

Pd0,3 Pd2,3 Pd3,3Pd1,3

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign 12

Tiling Size EffectsTiling Size Effects

90

100

60

70

80

20

30

40

50

0

10

20

ed nl
y & le
d

ed nl
y & le
d

ed nl
y & le
d

ed nl
y & le
d

til o

til
ed

un

ro
ll til o

til
ed

un

ro
ll til o

til
ed

un

ro
l l til o

til
ed

un

ro
l l

not tiled 4x4 tiles 8x8 tiles 12x12 tiles 16x16 tiles

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign

60

+
Points to Remember about CUDA
Memory

n  CUDA offers local memories/registers. Using these
efficiently reduces access to global memory and improves
performance. But it requires algorithm re-design

n  Blocks, Registers have limited memory. If data exceeds this
shared memory requirement, data has to be split into
multiple pieces

n  The ability to reason about hardware limitation when
developing an application is key aspect of computational
thinking

n  Tiled algorithms often increase performance. But key to it is
to exploit data locality

+
Accelerating MATLAB with CUDA

n  Massimiliano Fatica

n  NVIDIA

n  mfatica@nvidia.com

Won-Ki Jeong
University of Utah

wkjeong@cs.utah.edu

+Overview

MATLAB can be easily extended via MEX files to take
advantage of the computational power offered by the
latest NVIDIA GPUs (GeForce 8800, Quadro FX5600,
Tesla).

Programming the GPU for computational purposes was a
very cumbersome task before CUDA. Using CUDA, it is
now very easy to achieve impressive speed-up with
minimal effort.

This work is a proof of concept that shows the feasibility
and benefits of using this approach.

+
MEX file

n  Even though MATLAB is built on many well-optimized
libraries, some functions can perform better when written
in a compiled language (e.g. C and Fortran).

n  MATLAB provides a convenient API for interfacing code
written in C and FORTRAN to MATLAB functions with MEX
files.

n  MEX files could be used to exploit multi-core processors
with OpenMP or threaded codes or like in this case to
offload functions to the GPU.

+
NVMEX
n  Native MATLAB script cannot parse CUDA code

n  New MATLAB script nvmex.m compiles CUDA code (.cu) to create MATLAB
function files

n  Syntax similar to original mex script:

 >> nvmex –f nvmexopts.bat filename.cu –IC:\cuda\include

 –LC:\cuda\lib -lcudart

 Available for Windows and Linux from:

 http://developer.nvidia.com/object/matlab_cuda.html

+
Mex files for CUDA
A typical mex file will perform the following steps:

1. Convert from double to single precision
2. Rearrange the data layout for complex data
3. Allocate memory on the GPU
4. Transfer the data from the host to the GPU
5. Perform computation on GPU (library, custom code)
6. Transfer results from the GPU to the host
7. Rearrange the data layout for complex data
8. Convert from single to double
9. Clean up memory and return results to MATLAB

Some of these steps will go away with new versions of the library
(2,7) and new hardware (1,8)

+
CUDA MEX example

/*Parse input, convert to single precision and to interleaved complex format */

 …..

/* Allocate array on the GPU */

 cufftComplex *rhs_complex_d;

 cudaMalloc((void **) &rhs_complex_d,sizeof(cufftComplex)*N*M);

/* Copy input array in interleaved format to the GPU */

 cudaMemcpy(rhs_complex_d, input_single, sizeof(cufftComplex)*N*M, cudaMemcpyHostToDevice);

/* Create plan for CUDA FFT NB: transposing dimensions*/

 cufftPlan2d(&plan, N, M, CUFFT_C2C) ;

/* Execute FFT on GPU */

 cufftExecC2C(plan, rhs_complex_d, rhs_complex_d, CUFFT_INVERSE) ;

/* Copy result back to host */

 cudaMemcpy(input_single, rhs_complex_d, sizeof(cufftComplex)*N*M, cudaMemcpyDeviceToHost);

/* Clean up memory and plan on the GPU */

 cufftDestroy(plan); cudaFree(rhs_complex_d);

/*Convert back to double precision and to split complex format */

 ….

Additional code in MEX file to handle CUDA

+
Initial study

n  Focus on 2D FFTs.

n  FFT-based methods are often used in single precision (for
example in image processing)

n  Mex files to overload MATLAB functions, no modification
between the original MATLAB code and the accelerated one.

n  Application selected for this study:

 solution of the Euler equations in vorticity form using a pseudo-
spectral method.

+
Implementation details:

Case A) FFT2.mex and IFFT2.mex

 Mex file in C with CUDA FFT functions.

 Standard mex script could be used.

 Overall effort: few hours

Case B) Szeta.mex: Vorticity source term written in CUDA

 Mex file in CUDA with calls to CUDA FFT functions.

 Small modifications necessary to handle files with a .cu suffix

 Overall effort: ½ hour (starting from working mex file for 2D FFT)

+Configuration

Hardware:

 AMD Opteron 250 with 4 GB of memory

 NVIDIA GeForce 8800 GTX

Software:

 Windows XP and Microsoft VC8 compiler

 RedHat Enterprise Linux 4 32 bit, gcc compiler

 MATLAB R2006b

 CUDA 1.0

+
FFT2 performance

+
Vorticity source term

function S = Szeta(zeta,k,nu4)

% Pseudospectral calculation of vorticity source term

% S = -(- psi_y*zeta_x + psi_x*zeta_y) + nu4*del^4 zeta

% on a square periodic domain, where zeta = psi_xx + psi_yy is an NxN matrix

% of vorticity and k is vector of Fourier wavenumbers in each direction.

% Output is an NxN matrix of S at all pseudospectral gridpoints

 zetahat = fft2(zeta);

 [KX KY] = meshgrid(k,k);

% Matrix of (x,y) wavenumbers corresponding

% to Fourier mode (m,n)

 del2 = -(KX.^2 + KY.^2);

 del2(1,1) = 1; % Set to nonzero to avoid division by zero when inverting

% Laplacian to get psi

 psihat = zetahat./del2;

 dpsidx = real(ifft2(1i*KX.*psihat));

 dpsidy = real(ifft2(1i*KY.*psihat));

 dzetadx = real(ifft2(1i*KX.*zetahat));

 dzetady = real(ifft2(1i*KY.*zetahat));

 diff4 = real(ifft2(del2.^2.*zetahat));

 S = -(-dpsidy.*dzetadx + dpsidx.*dzetady) - nu4*diff4;

http://www.amath.washington.edu/courses/571-winter-2006/matlab/Szeta.m

+Caveats

The current CUDA FFT library only supports interleaved format for
complex data while MATLAB stores all the real data followed by the
imaginary data.

Complex to complex (C2C) transforms used

The accelerated computations are not taking advantage of the
symmetry of the transforms.

The current GPU hardware only supports single precision (double
precision will be available in the next generation GPU towards the
end of the year). Conversion to/from single from/to double is
consuming a significant portion of wall clock time.

+Advection of an elliptic vortex

MATLAB
168 seconds

MATLAB with CUDA
(single precision FFTs)
14.9 seconds (11x)

256x256 mesh, 512 RK4 steps, Linux, MATLAB file
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_vortex.m

+Pseudo-spectral simulation of 2D Isotropic
turbulence.

MATLAB
992 seconds

MATLAB with CUDA
(single precision FFTs)
93 seconds

512x512 mesh, 400 RK4 steps, Windows XP, MATLAB file
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

+

n  Power spectrum of vorticity is very sensitive to fine scales. Result
from original MATLAB run and CUDA accelerated one are in
excellent agreement

MATLAB run CUDA accelerated MATLAB run

Timing details

Runtime
Opteron 250

Speed
up

Runtime
Opteron 2210

Speed
up

PCI-e Bandwidth:
Host to/from device

1135 MB/s
1003 MB/s

1483 MB/s
1223 MB/s

Standard MATLAB 8098 s

9525s

Overload FFT2 and IFFT2 4425 s 1.8x 4937s 1.9x

Overload Szeta 735 s

11.x 789s 12.X

Overload Szeta , FFT2 and
IFFT2

577 s

14.x 605s 15.7x

1024x1024 mesh, 400 RK4 steps on Windows,
2D isotropic turbulence

