Data Parallel Execution and CUDA Memories

Abhijit Bendale
03/11/2014
CUDA Software Development

- CUDA Optimized Libraries: math.h, FFT, BLAS, ...
- Integrated CPU + GPU C Source Code
- NVIDIA C Compiler
- NVIDIA Assembly for Computing (PTX)
- CUDA Driver
- Profiler
- GPU
- CPU Host Code
- Standard C Compiler
- CPU
Compiling CUDA Code

Overview

C/C++ CUDA Application

NVCC

PTX Code

CPU Code

PTX to Target Compiler

G80

... GPU

Target code
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU code and execute it, caching data on chip for performance
Simple Processing Flow

1. Copy input data from CPU memory to GPU memory
2. Load GPU program and execute, caching data on chip for performance
3. Copy results from GPU memory to CPU memory
We need to assign memory in the device (GPU) for the Variables that we wish to use in the device.
Memory Model

All the blocks within the device have access to global memory of the device
Grid, Block, Thread, Kernel...

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
```

All threads that are generated by a kernel during an invocation are collectively called a grid.

FIGURE 3.2
Execution of a CUDA program.
A grid consists of multiple blocks. Each block has finite size (usually in increments of 32, since 32 threads form a warp).

Each block can execute many threads.

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
```
Grid, Block, Thread, Kernel...

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
```

Grid

Block 0

```
0 1 2 255
```

Block 1

```
0 1 2 255
```

Block N-1

```
0 1 2 255
```

Block = 1, Block Dimension = 256, Thread id = 2

```c
int i = threadIdx.x + blockDim.x * blockIdx.x;
258 = 2 + 256 * 1
```
A more complete version of vecAdd()

__global__
void vecAddKernel(float* A, float* B, float* C, int n) {
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if (i < n)
 C[i] = A[i] + B[i];
}

void vecAdd(float* h_A, float* h_B, float* h_C, int n) {
 int size = n * sizeof(float);
 float *A_d, *B_d, *C_d;

 cudaMalloc((void**) &d_A, size);
 cudaMemcpy(d_A, A, size, cudaMemcpyHostToDevice);
 cudaMalloc((void**) &d_B, size);
 cudaMemcpy(d_B, B, size, cudaMemcpyHostToDevice);
 cudaMalloc((void**) &d_C, size);

 vecAddKernel <<< ceil(n/256.0), 256 >>> (d_A, d_B, d_C, n);
 cudaMemcpy(C, d_C, size, cudaMemcpyDeviceToHost);

 //Free device (GPU) memory
 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
}
Kernel Memory Access

- **Per-thread**
 - Thread
 - Registers
 - On-chip
 - Off-chip, uncached

- **Per-block**
 - Block
 - Local Memory
 - Shared Memory
 - On-chip, small
 - Fast

- **Per-device**
 - Kernel 0
 - Kernel 1
 - Global Memory
 - Off-chip, large
 - Uncached
 - Persistent across kernel launches
 - Kernel I/O
Memory Spaces

- CPU and GPU have separate memory spaces
 - Data is moved across PCIe bus
 - Use functions to allocate/set/copy memory on GPU
 - Very similar to corresponding C functions

- Pointers are just addresses
 - Can’t tell from the pointer value whether the address is on CPU or GPU
 - Must exercise care when dereferencing:
 - Dereferencing CPU pointer on GPU will likely crash
 - Same for vice versa
Data Parallel Execution Model

- Fine-grained, data-parallel threads are fundamental means of parallel execution in CUDA

- Each thread uses a unique co-ordinate given by threadId $\{x,y,z\}$

- We will now study
 - Organization of threads
 - Resource Assignment to threads
 - Synchronization of threads
 - Scheduling of threads in a grid
Threads and dimensions

Block IDs and Thread IDs

- Each thread uses IDs to decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...

Courtesy: NDVIA

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign
Organization

- Grid is a 3D array of blocks. Each block is a 3D array of threads.
- The exact organization of a grid is determined by configuration parameters `<<< >>>` of kernel launch statement.
- `<<< No of Blocks in grid, Number of threads per block >>>`
- E.g. if we have to execute 4096 threads
 - `dim3 dimBlock(128, 1, 1) → Create 1D grid of 128 blocks`
 - `dim3 dimGrid(32, 1, 1) → each block has 32 threads`
 - `vecAddKernel <<< dimBlock, dimGrid >>> (....);`
 - `128*32 = 4096`
Multi-Dimensional Data

MEDICAL IMAGING

BIOINFORMATICS

SUPERCOMPUTING CENTERS

CAD / CAM / CAE

COMPUTATIONAL FLUID DYNAMICS

COMPUTATIONAL FINANCE

SEISMIC EXPLORATION

GIS

DEFENSE
The choice of 1D, 2D, 3D thread organization is done based on the nature of data

- 1D data: vector manipulation
- 2D Data: Image processing
- 3D Data: MRI Scans
A 2D Example

Process an image of size 76 x 62 pixels.
Block size: 16 x 16, Total blocks needed = 5 x 4 = 20

Goal: Double the value of each pixel
A 2D Example

5 blocks = 5x16 = 80 threads

4 blocks
= 4x16
= 64 threads

2 unused threads in Y direction

4 unused threads in X direction

16 x 16 blocks

image size 76 x 62

dim3 dimBlock(ceil(n/16.0), ceil(m/16.0), 1);
dim3 dimGrid(16, 16, 1);
pictureKernel<<< dimGrid, dimBlock>> (d_Pin, d_Pout, n, m)

gridDim.x = 5, gridDim.y = 4, blockDim.x = 16, blockDim.y = 16
Total number of threads generated = 76 x 62 = 4712
__global__ void PictureKernel(float* d_pin, float* d_Pout, int m, int n){

 // Calculate the row number
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column number
 int Col = blockIdx.x * blockDim.x + threadIdx.x;

 //each thread computes one element of d_Pout if in range
 if((Row < m) && (Col < n))
 d_Pout[Row*n + Col] = 2 * d_Pin[Row*n + Col];
}

Source code of PictureKernel() showing 2D thread mapping to a data pattern
if((Row < m) && (Col < n))

rows and cols both in range

Some rows out of range

Some cols Out of range

Some rows And cols out Of range
Row Major indexing

index = row * width + col

$2 \times 4 + 1 = 9$

Helpful in dynamic memory allocation.
Address are considered in continuous locations based on datatype
E.g. int = 4 bytes
The concept easily extends in 3D. Just have to keep track of Addition dimension

```c
int Plane = blockIdx.z * blockDim.z + threadIdx;
```

The linearized access to array P will be in the form

```
P[Plane * m * n + Row*n + Col]
```

Thus we have to keep track of 3 variables: Plane, row, col
Matrix Multiplication Example

We will consider square matrices only for clarity.
Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal to tile size

Tile Width = Block width (difference betn book editions)
Matrix Multiplication : Thread to Data Mapping

__global__ void MatrixMulKernel(float* d_M, float* d_N, int m, int n) {

 // Calculate the row number
 int Row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column number
 int Col = blockIdx.x * blockDim.x + threadIdx.x;

 // each thread computes one element of d_Pout if in range
 if((Row < m) && (Col < n)) {
 float P_value = 0;
 // each thread computes one element of the block submatrix
 for(int k =0; k < width; k++){
 P_value += d_M[Row * Width + k] * d_N[k * Width + Col];
 }
 d_P[Row * width + Col] = P_value;
 }
}

Why thread to data mapping?

Matrix Multiplication Using Multiple Blocks

- Break-up Pd into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal to tile size

- Divide the computation in tiles/blocks.
- Some block dimensions might be better than others (remember our 76 x 62 image example?)
- Find the optimal Block/Tile Sizes: “Autotuning” to gain maximum performance gain
- E.g. if we wanted to process matrix of size 1000 x 1000
 - #define BLOCK_SIZE 16 // will generate 64 x 64 blocks
 - #define BLOCK_SIZE 32 // will generate 32 x 32 blocks
Which one to use of the above 2 configuration? (Determined by other parameters as well (like number of streaming multiprocessors etc)
CUDA Thread Block

- All threads in a block execute the same kernel program (SPMD)
- Programmer declares block:
 - Block size 1 to 512 concurrent threads
 - Block shape 1D, 2D, or 3D
 - Block dimensions in threads
- Threads have thread id numbers within block
 - Thread program uses thread id to select work and address shared data
- Threads in the same block share data and synchronize while doing their share of the work
- Threads in different blocks cannot cooperate
 - Each block can execute in any order relative to other blocks!

Courtesy: John Nickolls, NVIDIA
Thread Synchronization

- To ensure that all threads in a block have completed a phase of their execution of the kernel before any of them can move on to the next phase.

- CUDA follows barrier synchronization: Wait till all threads from the block have completed execution before context/task switch.
Barrier Synchronization

Wait till all the threads complete the given task before proceeding with next operation.
Device Runtime Component: Synchronization Function

- `void __syncthreads();`

 Synchronizes all threads in a block
 - Once all threads have reached this point, execution resumes normally
 - Used to avoid RAW / WAR / WAW hazards when accessing shared

 Allowed in conditional code only if the conditional is uniform across the entire thread block
Host Synchronization

- All kernel launches are asynchronous
 - control returns to CPU immediately
 - kernel executes after all previous CUDA calls have completed

- `cudaMemcpy()` is synchronous
 - control returns to CPU after copy completes
 - copy starts after all previous CUDA calls have completed

- `cudaThreadSynchronize()`
 - blocks until all previous CUDA calls complete
Host Synchronization Example

// copy data from host to device
cudaMemcpy(a_d, a_h, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
inc_gpu<<<ceil(N/(float)blocksize), blocksize>>>(a_d, N);

// run independent CPU code
run_cpu_stuff();

// copy data from device back to host
cudaMemcpy(a_h, a_d, numBytes, cudaMemcpyDeviceToHost);
Thread Synchronization: Points to understand

- CUDA allows thread synchronization within the block but not across blocks

- This means blocks do not have time-dependency on one another: Can be executed in any order

- This flexibility allows scalable implementations

- Enables execution of same code at wide range of speeds (hence same code can be applied to different hardware) e.g. different wait times for resources

- The ability to execute the same application code on hardware with a different number of execution resources is referred to as transparent scalability
Transparent Scalability

• Hardware is free to assign blocks to any processor at any time
 – A kernel scales across any number of parallel processors

Each block can execute in any order relative to other blocks.
Assigning Resources

A thread needs resources: memory, registers etc.

These resources hold data/code for the thread to execute.
Executing thread blocks

SMs execute the operations in a block.

Shared memory contains data/code for execution for all the blocks within a SM.

Threads are assigned to Streaming Multiprocessors in block granularity:
- Up to 8 blocks to each SM as resource allows
- SM in G80 can take up to 768 threads
 - Could be 256 (threads/block) * 3 blocks
 - Or 128 (threads/block) * 6 blocks, etc.

- Threads run concurrently
 - SM maintains thread/block id #s
 - SM manages/schedules thread execution

Execution resources are organized into streaming multiprocessors SMs.
Scheduling Blocks onto SMs

- HW Schedules thread blocks onto available SMs
 - No guarantee of ordering among thread blocks
 - HW will schedule thread blocks as soon as a previous thread block finishes
Mapping of Thread Blocks

- Each thread block is mapped to one or more warps
- The hardware schedules each warp independently
Thread Scheduling Example

- SM implements zero-overhead warp scheduling
 - At any time, only one of the warps is executed by SM
 - Warps whose next instruction has its inputs ready for consumption are eligible for execution
 - Eligible warps are selected for execution on a prioritized scheduling policy
 - All threads in a warp execute the same instruction when selected

TB = Thread Block, W = Warp
Thread Scheduling

- Each Block is executed as 32-thread Warps
 - An implementation decision, not part of the CUDA programming model
 - Warps are scheduling units in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
 - Each Block is divided into 256/32 = 8 Warps
 - There are 8 * 3 = 24 Warps
G80 Example: Thread Scheduling (Cont.)

• SM implements zero-overhead warp scheduling
 – Warps whose next instruction has its operands ready for consumption are eligible for execution
 – Eligible Warps are selected for execution on a prioritized scheduling policy
 – All threads in a warp execute the same instruction when selected
G80 Block Granularity Considerations

• For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?

 – For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM!

 – For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule.

 – For 32X32, we have 1024 threads per Block. Not even one can fit into an SM!
Recap

Grid: Total number of threads
Block: Organization for threads
Streaming Processors: Resource allocation for Threads
Grids, blocks, threads can have multiple dimensions
Device and Resource Query

- How to find device configurations?
- How many SMs? How many threads per block?

```c
cudaDeviceProp dev_prop;
for(i = 0; I < dev_count; i++){
    cudaGetDeviceProperties(&dev_prop, i);
    // decide if device has sufficient resources
}

// cudaDeviceProp is a C structure
```
cudaDeviceProp Struct Reference
[Data types used by CUDA Runtime]

Data Fields

- `int asyncEngineCount`
- `int canMapHostMemory`
- `int clockRate`
- `int computeMode`
- `int concurrentKernels`
- `int deviceOverlap`
- `int ECCEnabled`
- `int integrated`
- `int kernelExecTimeoutEnabled`
- `int l2CacheSize`
- `int major`
- `int maxGridSize [3]`
- `int maxSurface1D`
- `int maxSurface1DLayered [2]`
- `int maxSurface2D [2]`
- `int maxSurface2DLayered [3]`
- `int maxSurface3D [3]`
- `int maxSurfaceCubemap`
- `int maxSurfaceCubemapLayered [2]`
- `int maxTexture1D`
- `int maxTexture1DLayered [2]`
- `int maxTexture1DLinear`
- `int maxTexture2D [2]`
- `int maxTexture2DLayered [2]`
- `int maxTexture2DLinear [3]`
- `int maxTexture3D [3]`
- `int maxTextureCubemap`
- `int maxTextureCubemapLayered [2]`
- `int maxThreadsDim [3]`
- `int maxThreadsPerBlock`
- `int maxThreadsPerMultiprocessor`
- `size_t memPitch`
- `int minor`
- `int multiProcessorCount`
- `char name [256]`
- `int pciBusID`
- `int pciDeviceID`
- `int pciDomainID`
- `int regsPerBlock`
- `size_t sharedMemPerBlock`
- `size_t surfaceAlignment`
- `int tccDriver`
- `size_t textureAlignment`
- `size_t texturePitchAlignment`
- `size_t totalConstMem`
- `size_t totalGlobalMem`
- `int unifiedAddressing`
- `int warpSize`
Device Management

- CPU can query and select GPU devices
 - `cudaGetDeviceCount(int* count)`
 - `cudaSetDevice(int device)`
 - `cudaGetDevice(int *current_device)`
 - `cudaGetDeviceProperties(cudaDeviceProp* prop, int device)`
 - `cudaChooseDevice(int *device, cudaDeviceProp* prop)`

- Multi-GPU setup:
 - device 0 is used by default
 - one CPU thread can control one GPU
 - multiple CPU threads can control the same GPU
 - calls are serialized by the driver
Kepler GK110 supports the new CUDA Compute Capability 3.5. (For a brief overview of CUDA see Appendix A - Quick Refresher on CUDA). The following table compares parameters of different Compute Capabilities for Fermi and Kepler GPU architectures:

<table>
<thead>
<tr>
<th></th>
<th>FERMI GF100</th>
<th>FERMI GF104</th>
<th>KEPLER GK104</th>
<th>KEPLER GK110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute Capability</td>
<td>2.0</td>
<td>2.1</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Threads / Warp</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Max Warps / Multiprocessor</td>
<td>48</td>
<td>48</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Max Threads / Multiprocessor</td>
<td>1536</td>
<td>1536</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>Max Thread Blocks / Multiprocessor</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>32-bit Registers / Multiprocessor</td>
<td>32768</td>
<td>32768</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Max Registers / Thread</td>
<td>63</td>
<td>63</td>
<td>63</td>
<td>255</td>
</tr>
<tr>
<td>Max Threads / Thread Block</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Shared Memory Size Configurations (bytes)</td>
<td>16K</td>
<td>16K</td>
<td>16K</td>
<td>16K</td>
</tr>
<tr>
<td></td>
<td>48K</td>
<td>48K</td>
<td>32K</td>
<td>32K</td>
</tr>
<tr>
<td></td>
<td>48K</td>
<td>48K</td>
<td>48K</td>
<td>48K</td>
</tr>
<tr>
<td>Max X Grid Dimension</td>
<td>2^{16-1}</td>
<td>2^{16-1}</td>
<td>2^{32-1}</td>
<td>2^{32-1}</td>
</tr>
<tr>
<td>Hyper-Q</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Dynamic Parallelism</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Compute Capability of Fermi and Kepler GPUs
Specifications

Note: The below specifications represent this GPU as incorporated into NVIDIA's reference graphics card design. Graphics card specifications may vary by Add-in-card manufacturer. Please refer to the Add-in-card manufacturers' website for actual shipping specifications.

GTX 780 GPU Engine Specs:
- **CUDA Cores**: 2304
- **Base Clock (MHz)**: 863
- **Boost Clock (MHz)**: 900
- **Texture Fill Rate (billion/sec)**: 160.5

GTX 780 Memory Specs:
- **Memory Speed**: 6.0 Gbps
- **Standard Memory Config**: 3072 MB
- **Memory Interface**: GDDR5
- **Memory Interface Width**: 384-bit
- **Memory Bandwidth (GB/sec)**: 288.4

GTX 780 Support:
- **Important Technologies**: GPU Boost 2.0, PhysX, TXAA, NVIDIA G-SYNC-ready, SHIELD-ready
- **Other Supported Technologies**: 3D Vision, CUDA, DirectX 11, Adaptive VSync, FXAA, 3D Vision Surround, SLI-ready
- **OpenGL**: 4.3
- **Bus Support**: PCI Express 3.0
- **Certified for Windows 7, Windows 8, Windows Vista, or Windows XP**: Yes
- **3D Vision Ready**: Yes
- **3D Gaming**: Yes
- **Blu Ray 3D**: Yes
- **3D Vision Live (Photos and Videos)**: Yes
We need to assign memory in the device (GPU) for the Variables that we wish to use in the device.
Hardware Implementation of CUDA Memories

Each thread can:
- Read/write per-thread registers
- Read/write per-thread local memory
- Read/write per-block shared memory
- Read/write per-grid global memory
- Read/only per-grid constant memory
Importance of Memory Access Efficiency

```c
for(int k = 0; k < Width; k++)
    Pvalue += d_M[Row * Width + k] + d_N[k*Width + Col]
```

Every iteration has 2 global memory access for one floating point addition and one floating point multiplication. Thus it has *Compute to global memory access ratio (CGMA) is 1:1*

It has major performance implications:
Eg: Memory Bandwidth: 200 GB/s
Floating point size: 4 Bytes. Therefore 50 Gigs single precision operands/sec i.e. it will execute at the max 50 GFLOPS.

Peak performance usually at 1500 GFLOPS (1.5 TFLOPS)
Only way to get around this is to increase CGMA ratio i.e.

REDUCE MEMORY ACCESS
Let's understand threads in detail

- Thread is a virtualized von Neuman processor.
- In von Neuman model, code of program is stored in memory, PC keeps track of particular point of the program, IR has instructions, Registers and memory holds value of variables and data structure.
Processing Units and Threads

- Modern processors are designed to allow context switching, where multiple threads can time-share processor.

- During context switch, intermediate values are saved in registers/memory.

- GPUs allow multiple processors, single instruction i.e all processors execute same instructions. Hence, resource sharing between threads is important.

- The reason why threads are organized into blocks/warps.
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int var;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>int array_var[10];</td>
<td>local</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>shared int shared_var;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int global_var;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>constant int constant_var;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **“automatic” scalar variables** without qualifier reside in a register
 - compiler will spill to thread local memory
- **“automatic” array variables** without qualifier reside in thread-local memory

© 2008 NVIDIA Corporation
CUDA Variable Type Performance

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>int var;</code></td>
<td>register</td>
<td>1x</td>
</tr>
<tr>
<td><code>int array_var[10];</code></td>
<td>local</td>
<td>100x</td>
</tr>
<tr>
<td><code>__shared__ int shared_var;</code></td>
<td>shared</td>
<td>1x</td>
</tr>
<tr>
<td><code>__device__ int global_var;</code></td>
<td>global</td>
<td>100x</td>
</tr>
<tr>
<td><code>__constant__ int constant_var;</code></td>
<td>constant</td>
<td>1x</td>
</tr>
</tbody>
</table>

- Scalar variables reside in fast, on-chip registers
- Shared variables reside in fast, on-chip memories
- Thread-local arrays & global variables reside in uncached off-chip memory
- Constant variables reside in cached off-chip memory
A Common Programming Strategy

- Global memory resides in device memory (DRAM)
- Much slower access than shared memory
- **Tile data** to take advantage of fast shared memory:
 - Generalize from `adjacent_difference` example
 - Divide and conquer
Partition data into subsets that fit into shared memory
A Common Programming Strategy

Handle each data subset with one thread block
Load the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism.
A Common Programming Strategy

Perform the computation on the subset from shared memory
A Common Programming Strategy

- Copy the result from **shared memory** back to global memory
A Common Programming Strategy

- Carefully partition data according to access patterns
- Read-only \Rightarrow **constant** memory (fast)
- R/W & shared within block \Rightarrow **shared** memory (fast)
- R/W within each thread \Rightarrow registers (fast)
- Indexed R/W within each thread \Rightarrow local memory (slow)
- R/W inputs/results \Rightarrow **cudaMalloc**'ed global memory (slow)

© 2008 NVIDIA Corporation
Tiled Matrix Multiplication

<table>
<thead>
<tr>
<th></th>
<th>Phase 1</th>
<th></th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>T<sub>0,0</sub></td>
<td>(Md_{0,0})</td>
<td>Nd<sub>0,0</sub></td>
<td>(PValue_{0,0} += Mds_{0,0} \cdot Nd_{0,0} + Mds_{1,0} \cdot Nd_{1,0})</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>(Mds_{0,0})</td>
<td>Nd<sub>0,0</sub></td>
<td>(PValue_{0,0} += Mds_{0,0} \cdot Nd_{0,0} + Mds_{1,0} \cdot Nd_{1,0}) & (Md_{2,0})</td>
</tr>
<tr>
<td></td>
<td>Md<sub>1,0</sub></td>
<td>(Nd<sub>1,0</sub>)</td>
<td>(PValue_{1,0} += Mds_{0,0} \cdot Nd_{1,0} + Mds_{1,0} \cdot Nd_{1,0}) & (Md_{3,0})</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>(Mds_{1,0})</td>
<td>Nd<sub>1,0</sub></td>
<td>(PValue_{1,0} += Mds_{0,0} \cdot Nd_{1,0} + Mds_{1,0} \cdot Nd_{1,0}) & (Md_{3,0})</td>
</tr>
<tr>
<td>T<sub>0,1</sub></td>
<td>(Md_{0,1})</td>
<td>(Nd_{0,1})</td>
<td>(PValue_{0,1} += Mds_{0,1} \cdot Nd_{0,0} + Mds_{1,1} \cdot Nd_{1,1}) & (Md_{2,1})</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>(Mds_{0,1})</td>
<td>Nd<sub>0,1</sub></td>
<td>(PValue_{0,1} += Mds_{0,1} \cdot Nd_{0,0} + Mds_{1,1} \cdot Nd_{1,1}) & (Md_{2,1})</td>
</tr>
<tr>
<td>T<sub>1,1</sub></td>
<td>(Md_{1,1})</td>
<td>(Nd_{1,1})</td>
<td>(PValue_{1,1} += Mds_{0,1} \cdot Nd_{1,0} + Mds_{1,1} \cdot Nd_{1,1}) & (Md_{3,1})</td>
</tr>
<tr>
<td></td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
<td>(\downarrow)</td>
</tr>
<tr>
<td></td>
<td>(Mds_{1,1})</td>
<td>Nd<sub>1,1</sub></td>
<td>(PValue_{1,1} += Mds_{0,1} \cdot Nd_{1,0} + Mds_{1,1} \cdot Nd_{1,1}) & (Md_{3,1})</td>
</tr>
</tbody>
</table>

\(T \) represents different time steps.
Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of \(M_d \) and \(N_d \).
A Small Example: Multiplication
Tiling Size Effects

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010
ECE408, University of Illinois, Urbana Champaign
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;
4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on
5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Collaborative loading of Md and Nd tiles into shared memory
9. Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
10. Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[ty][k] * Nds[k][tx];
14. __syncthreads();
}
15. Pd[Row*Width + Col] = Pvalue;
}
Points to Remember about CUDA Memory

- CUDA offers local memories/registers. Using these efficiently reduces access to global memory and improves performance. But it requires algorithm re-design.

- Blocks, Registers have limited memory. If data exceeds this shared memory requirement, data has to be split into multiple pieces.

- The ability to reason about hardware limitation when developing an application is key aspect of computational thinking.

- Tiled algorithms often increase performance. But key to it is to exploit data locality.
Accelerating MATLAB with CUDA

- Massimiliano Fatica
- NVIDIA
- mfatica@nvidia.com

Won-Ki Jeong
University of Utah
wkjeong@cs.utah.edu
MATLAB can be easily extended via MEX files to take advantage of the computational power offered by the latest NVIDIA GPUs (GeForce 8800, Quadro FX5600, Tesla).

Programming the GPU for computational purposes was a very cumbersome task before CUDA. Using CUDA, it is now very easy to achieve impressive speed-up with minimal effort.

This work is a proof of concept that shows the feasibility and benefits of using this approach.
MEX file

- Even though MATLAB is built on many well-optimized libraries, some functions can perform better when written in a compiled language (e.g. C and Fortran).

- MATLAB provides a convenient API for interfacing code written in C and FORTRAN to MATLAB functions with MEX files.

- MEX files could be used to exploit multi-core processors with OpenMP or threaded codes or like in this case to offload functions to the GPU.
NVMEX

- Native MATLAB script cannot parse CUDA code

- New MATLAB script nvmex.m compiles CUDA code (.cu) to create MATLAB function files

- Syntax similar to original mex script:

  ```
  >> nvmex -f nvmexopts.bat filename.cu -IC:\cuda\include
  -LC:\cuda\lib -lcudart
  ```

Available for Windows and Linux from:

Mex files for CUDA

A typical mex file will perform the following steps:

1. Convert from double to single precision
2. Rearrange the data layout for complex data
3. Allocate memory on the GPU
4. Transfer the data from the host to the GPU
5. Perform computation on GPU (library, custom code)
6. Transfer results from the GPU to the host
7. Rearrange the data layout for complex data
8. Convert from single to double
9. Clean up memory and return results to MATLAB

Some of these steps will go away with new versions of the library (2,7) and new hardware (1,8)
CUDA MEX example

Additional code in MEX file to handle CUDA

/* Parse input, convert to single precision and to interleaved complex format */

/* Allocate array on the GPU */

cufftComplex *rhs_complex_d;

cudaMalloc((void **) &rhs_complex_d,sizeof(cufftComplex)*N*M);

/* Copy input array in interleaved format to the GPU */

cudaMemcpy(rhs_complex_d, input_single, sizeof(cufftComplex)*N*M, cudaMemcpyHostToDevice);

/* Create plan for CUDA FFT: NB: transposing dimensions */

cufftPlan2d(&plan, N, M, CUFFT_C2C);

/* Execute FFT on GPU */

cufftExecC2C(plan, rhs_complex_d, rhs_complex_d, CUFFT_INVERSE);

/* Copy result back to host */

cudaMemcpy(input_single, rhs_complex_d, sizeof(cufftComplex)*N*M, cudaMemcpyDeviceToHost);

/* Clean up memory and plan on the GPU */

cufftDestroy(plan); cudaFree(rhs_complex_d);

/* Convert back to double precision and to split complex format */

/* Additional code in MEX file to handle CUDA */
Initial study

- Focus on 2D FFTs.

- FFT-based methods are often used in single precision (for example in image processing).

- Mex files to overload MATLAB functions, no modification between the original MATLAB code and the accelerated one.

- Application selected for this study:

solution of the Euler equations in vorticity form using a pseudo-spectral method.
Implementation details:

Case A) FFT2.mex and IFFT2.mex

Mex file in C with CUDA FFT functions.

Standard mex script could be used.

Overall effort: few hours

Case B) Szeta.mex: Vorticity source term written in CUDA

Mex file in CUDA with calls to CUDA FFT functions.

Small modifications necessary to handle files with a .cu suffix

Overall effort: \(\frac{1}{2}\) hour (starting from working mex file for 2D FFT)
Configuration

Hardware:

- **AMD Opteron 250 with 4 GB of memory**
- **NVIDIA GeForce 8800 GTX**

Software:

- **Windows XP and Microsoft VC8 compiler**
- **RedHat Enterprise Linux 4 32 bit, gcc compiler**
- **MATLAB R2006b**
- **CUDA 1.0**
FFT2 performance

- 2D FFT on complex data:
 - Time (sec.) vs. Size N
 - Native MATLAB SP
 - CUDA with SP source

- 2D FFT on complex data:
 - Speed-up vs. Size N
Vorticity source term

http://www.amath.washington.edu/courses/571-winter-2006/matlab/Szeta.m

```matlab
function S = Szeta(zeta,k,nu4)

% Pseudospectral calculation of vorticity source term
% S = -(- psi_y*zeta_x + psi_x*zeta_y) + nu4*del^4 zeta
% on a square periodic domain, where zeta = psi_xx + psi_yy is an NxN matrix
% k is vector of Fourier wavenumbers in each direction.
% Output is an NxN matrix of S at all pseudospectral gridpoints

zetahat = fft2(zeta);
[KX KY] = meshgrid(k,k);
% Matrix of (x,y) wavenumbers corresponding to Fourier mode (m,n)

del2 = -(KX.^2 + KY .^2);
del2(1,1) = 1; % Set to nonzero to avoid division by zero when inverting Laplacian to get psi

psihat = zetahat./del2;
dpsidx = real(ifft2(1i*KX.*psihat));
dpsidy = real(ifft2(1i*KY .*psihat));
dzetadx = real(ifft2(1i*KX.*zetahat));
dzetady = real(ifft2(1i*KY .*zetahat));
diff4 = real(ifft2(del2.^2.*zetahat));

S = -(-dpsidy.*dzetadx + dpsidx.*dzetady) - nu4*diff4;
```
Caveats

The current CUDA FFT library only supports interleaved format for complex data while MATLAB stores all the real data followed by the imaginary data.

Complex to complex (C2C) transforms used

The accelerated computations are not taking advantage of the symmetry of the transforms.

The current GPU hardware only supports single precision (double precision will be available in the next generation GPU towards the end of the year). Conversion to/from single from/to double is consuming a significant portion of wall clock time.
Advection of an elliptic vortex

256x256 mesh, 512 RK4 steps, Linux, MATLAB file
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_vortex.m

MATLAB
168 seconds

MATLAB with CUDA
(single precision FFTs)
14.9 seconds (11x)
Pseudo-spectral simulation of 2D Isotropic turbulence.

512x512 mesh, 400 RK4 steps, Windows XP, MATLAB file http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2DTurb.m

MATLAB
992 seconds

MATLAB with CUDA (single precision FFTs)
93 seconds
- Power spectrum of vorticity is very sensitive to fine scales. Results from original MATLAB run and CUDA accelerated one are in excellent agreement.
Timing details

1024x1024 mesh, 400 RK4 steps on Windows, 2D isotropic turbulence

<table>
<thead>
<tr>
<th></th>
<th>Runtime Opteron 250</th>
<th>Speed up</th>
<th>Runtime Opteron 2210</th>
<th>Speed up</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI-e Bandwidth: Host to/from device</td>
<td>1135 MB/s</td>
<td>1.8x</td>
<td>1483 MB/s</td>
<td>1.9x</td>
</tr>
<tr>
<td>Host to/from device</td>
<td>1003 MB/s</td>
<td></td>
<td>1223 MB/s</td>
<td></td>
</tr>
<tr>
<td>Standard MATLAB</td>
<td>8098 s</td>
<td></td>
<td>9525 s</td>
<td></td>
</tr>
<tr>
<td>Overload FFT2 and IFFT2</td>
<td>4425 s</td>
<td>1.8x</td>
<td>4937s</td>
<td>1.9x</td>
</tr>
<tr>
<td>Overload Szeta</td>
<td>735 s</td>
<td>11.x</td>
<td>789s</td>
<td>12.X</td>
</tr>
<tr>
<td>Overload Szeta, FFT2 and IFFT2</td>
<td>577 s</td>
<td>14.x</td>
<td>605s</td>
<td>15.7x</td>
</tr>
</tbody>
</table>