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ABSTRACT

Tampered images pose a serious predicament since digitized
media is a ubiquitous part of our lives. These are facilitated
by the availability of image editing software and recent ad-
vances in deep Generative Adversarial Networks (GANs). We
propose an innovative method to formulate the problem of lo-
calizing manipulated regions in fake images as a deep repre-
sentation learning problem using the Information Bottleneck
(IB) principle. We devise a convolutional neural net-based
architecture, InfoPrint (IP), that uses variational inference to
approximate the IB formulation. Testing on three standard
datasets, we demonstrate that InfoPrint outperforms the state-
of-the-art by 3% points or more. Additionally, we demon-
strate that it has the ability to to detect alterations made by
inpainting GANs.

Index Terms— Digital image forensics, Information Bot-
tleneck, deep representation learning, variational inference.

1. INTRODUCTION

With our increased reliance on digital images and videos
as trustworthy sources of information, the ability to photo-
realistically alter their contents is a grave danger. Here, we
focus on localizing an important class of manipulations that
introduce foreign material into a target image, e.g., splicing,
where part(s) of other image(s) are inserted, or inpainting,
where part(s) are hallucinated by specialized algorithms.

Unlike in most computer-vision problems, non-semantic
pixel-level statistics have proven to be more successful for
solving forensic tasks than semantic information since at-
tackers use semantics to hide their modifications. Low-level
statistics contain camera model-specific distortions and noise
patterns, which differ between the tampered regions and the
host image because they originate from different sources.

Over the years, numerous hand engineered statistical fea-
tures, including sensor noise, demosaicing traces, and com-
pression artefacts, have been explored [1, 2, 3]. Others have
improved over these by modelling non process-specific noise-
residuals using high-pass filters like Wavelet transforms and
spatial Rich Filters (RFs) [4, 5]. Recent advances come from
Convolutional Neural Networks (CNNs) and learned RFs
with constrained convolutions [6]. However, such high-pass
filters also capture semantics – like edges – therefore, foren-
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Fig. 1. InfoPrint leverages the Information Bottleneck (IB)
to improve forgery-localization in digital images. The en-
coder (with stochastic latent-space) is trained to learn low-
level noise-residual features (fingerprints) on a proxy task of
camera model classification. At inference, a Gaussian mix-
ture model segregates these noise fingerprints to identify the
genuine patches from the forged ones. Rich filters, which
have been used previously, are inaccurate since they are con-
taminated by semantic edges of the input image. IB improves
over rich filters by suppressing the semantic contents and am-
plifying the true camera noise fingerprint(s) in an image.

sic algorithms may not function optimally [7]. SpliceRadar
(SR) [7], attempted to suppress these semantic edges by reg-
ularizing the Mutual Information (MI) between the input and
the features but used a numerically unstable method. Here,
we tackle this issue with an information theoretic framework.

Information theory is a powerful framework that is in-
creasingly adopted to improve various aspects of deep ma-
chine learning, e.g., representation learning, generalizability,
and regularization [8], and for interpreting how deep neural
networks function [9]. Here, we consider the Information
Bottleneck (IB) [10], a framework for learning compressed
representations that allows us to control the information flow
between the input and the representation layer.

In this work, we propose a novel IB-based CNN archi-
tecture for localizing splicing/inpainting image forgeries.
Our solution overcomes the limitations of state-of-the-art
approaches by learning to extract low-level camera model
noise-residuals uncontaminated by semantic edges. The
main contributions of this work are: (i) we cast the problem

����������	������
���	���������	�	������ �����	�	�

Authorized licensed use limited to: UNIV OF COLORADO COLORADO SPRINGS. Downloaded on August 18,2021 at 20:10:35 UTC from IEEE Xplore.  Restrictions apply. 



of modelling distinguishing camera model fingerprints as a
data-driven representation learning problem based on IB; (ii)
our application of IB is unique in the sense that it is the com-
plete reverse of why it has been typically applied [11, 12] –
instead of garnering semantic contents, the information com-
pression helps ignore the semantics and focuses on low-level
noise-residuals useful for segregating camera models; and
(iii) we demonstrate our method’s ability to detect signatures
of deep generative models by pitting it against three recent
inpainting GANs. We call our proposed method InfoPrint
(IP) because the learned noise-residual representation is like
a camera model’s fingerprint.

2. INFORMATION BOTTLENECK

Learning a predictive model p(y|x) is hampered when a
model overfits nuisance detractors in the input data X , irrel-
evant for a task Y . This is crucial in deep learning when the
input is high dimensional (e.g., an image), the task is a simple
low dimensional class label, and the model is a flexible neu-
ral network. The goal of IB is to overcome this problem by
learning a compressed representation Z, of X , which is opti-
mal for the task Y . The IB Lagrangian [10], based on the MI
values I(Z,X), I(Z, Y ), is L = I(Z, Y ) − β · I(Z,X). In-
tuitively IB extracts the relevant information that X contains
about Y and discards non-informative signals. β regulates the
information flow: a larger β results in a greater constriction
of information from X to Z.

However, MI is hard to compute with high dimensional
variables. A variational approximation to IB, applicable to
neural networks, is proposed in [11], where the IB Lagrangian
is bounded below by the approximate objective function:

JIB(p, q) =
1

N

N∑
i=1

Ez∼p(z|xi) [− log q(yi|z)]

+ β KL[p(z|xi)||r(z)] ≥ −L, (1)

where Z is a stochastic latent layer, p(z|x) is an encoder net-
work, q(y|z) is a decoder network that approximates the in-
tractable p(y|z), and r(z) is a prior distribution that replaces
the unknown p(z). The first term on the r.h.s. is the average
cross-entropy loss (with stochastic sampling over z), while
the second term is a regularization. Eq 1 can be minimized
using the reparameterization trick [13].

According to the rate-distortion interpretation of IB [12],
the loss term is denoted as distortion D that approximates
−I(Z, Y ). The unweighted regularization term is denoted as
rate R, which approximates I(Z,X) and measures the num-
ber of bits required to encode the representations. The RD
plane allows to visualize solutions to the IB Lagrangian for
different values of β. Inspecting this RD curve helps in se-
lecting β to trade off between the distortion, which affects
task accuracy, and the rate, which affects compression and

hence the generalization capacity. This results in a principled
information theoretic regularization, which can be measured
in quantities of information (in units of bits).

3. INFOPRINT ARCHITECTURE

Our goal is to localize a forgery where foreign material has
been inserted into a host image to alter its contents. Since
semantic structures can be misleading, our strategy is to ex-
tract low-level noise fingerprints of an image and then pin-
point inconsistencies in these (Fig. 1), where ideal noise fin-
gerprints are high frequency contents uncorrelated to the se-
mantic structures in an image.

The optimal network, therefore, needs to learn represen-
tations of noise-residuals that (a) are not contaminated by se-
mantic information and (b) can distinguish camera models.
To achieve this, first we design an architecture that extracts
relevant high frequency contents and then uses IB to squeeze
out semantic correlations with the input. Second, we select
a proxy training task of classifying the source camera model.
As the semantics cannot be related to the camera model it
forces the network to focus on non-semantic noise statistics.
Additionally, we train our network with a large number of
camera models to improve its ability to segregate even unseen
devices. This allows our network to generalize effectively in a
blind test setting with images acquired on unknown cameras.
Architecture We consider a deep encoder-decoder architec-
ture with a stochastic representation layer that takes in an
RGB image-patch X , computes features Z of the patch’s
noise-residuals, and from these classifies the source camera
model Y during training.

In the first layer, we include constrained convolutions of
the form [7]: R(k) = wk(0, 0) +

∑
i,j �=0,0 wk(i, j) = 0,

which computes noise-residuals: the mismatch between a
pixel’s true value and its interpolated value from its S × S
neighbours. These can be trained end-to-end by including the
penalty RRF = (

∑
k(R(k))2)

1
2 in the cost function.

For our encoder p(z|x), we consider a CNN architecture
inspired by ResNet-18v1 [14], where we discard operations
that quickly shrink the input and encourage learning high-
level (semantic) features. Namely, we discard the initial max-
pooling layer, all convolutions with stride greater than one,
and the final global pooling layer. We found these to be detri-
mental to our task. Instead, we include additional 7 × 7 and
5×5 convolutions to reduce the input patch to a single feature-
pixel with a large bank of filters, thus avoiding fully connected
layers. The final architecture is a 27-layers deep CNN (Ta-
ble 1). Every convolution is followed by batch normaliza-
tion and ReLU activation. To get a stochastic encoding, we
split the CNN’s output vector of 72 filters into μx and σx and
model p(z|x) = N (μx, diag(σx)) [13].

We adopt an extremely simple decoder q(y|z) to deter our
model from degenerating to the auto-decoder limit [12], an is-
sue we also observed. We select a logistic regression model: a
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constrained conv. residual conv. encoding conv.

3× 3, 64 7× 7, 64,

[
3× 3, 64
3× 3, 64

]
︸ ︷︷ ︸

res.block

, 5× 5, 64,

[
3× 3, 64
3× 3, 64

]
︸ ︷︷ ︸

res.block︸ ︷︷ ︸
×4

, 7× 7, 64 1× 1, (36 + 36︸ ︷︷ ︸
μ, σ

)

Table 1. The InfoPrint encoder is a CNN with 27 layers. The input patch is 49× 49× 3 and the output encoding is 1× 1× 72.

dense (logit generating) layer that is connected to the stochas-
tic code layer Z and is activated by the softmax function.

Such an architecture, however, would suffer from the
same limitations as the state-of-the-art approaches, since the
constrained convolutions would also capture semantic edges.
To squeeze out such semantic correlations, we consider the
IB objective function rather than a simple cross-entropy loss
for training because Eq. 1 allows us to control the information
flow between the input X and the latent code Z. We select
the regularization parameter β by plotting the RD curve and
finding the right balance between training task accuracy and
the amount of information throughput. Excess throughput
would result in Z being contaminated by semantic edges,
while insufficient throughput would result in training failure.

However, we have two tasks. Our main task is splice lo-
calization but we train our model on a proxy task of camera
model identification. Therefore, we employ the RD curve of
the training task to first narrow the potential range for β be-
fore determining the optimal β(’s) through empirical testing.
Inference Assuming that the untampered region is the largest
part of the image, we simplify the forgery localization prob-
lem to a two-class feature segmentation problem. First, we

(F1) DSO-1 NC16 NC17-dev1
IP-NoRF 0.50 (0.40) 0.38 (0.27) 0.40 (0.29)
IP-NoIB 0.68 (0.56) 0.40 (0.29) 0.41 (0.31)
IP1e-3 0.71 (0.55) 0.42 (0.29) 0.44 (0.31)
IP5e-4 0.72 (0.58) 0.40 (0.29) 0.42 (0.31)
SR 0.69 (0.59) 0.39 (0.28) 0.40 (0.32)
EX-SC 0.57 (0.49) 0.38 (0.31) 0.44 (0.37)
SB 0.66 (0.54) 0.37 (0.26) 0.43 (0.36)

Table 2. F1 scores. Black/blue: optimal/Otsu threshold.

(MCC) DSO-1 NC16 NC17-dev1
IP-NoRF 0.44 (0.32) 0.37 (0.24) 0.33 (0.22)
IP-NoIB 0.64 (0.53) 0.38 (0.27) 0.35 (0.25)
IP1e-3 0.67 (0.53) 0.40 (0.28) 0.38 (0.25)
IP5e-4 0.69 (0.55) 0.38 (0.27) 0.35 (0.24)
SR 0.65 (0.55) 0.37 (0.26) 0.33 (0.25)
EX-SC 0.52 (0.43) 0.36 (0.29) 0.38 (0.30)
SB 0.61 (0.48) 0.34 (0.25) 0.36 (0.25)

Table 3. MCC scores. Black/blue: optimal/Otsu threshold.

compute our network’s representation (μ,σ) for all juxta-
posed patches in the test image. Then, we segment these 72-
dimensional features using a Gaussian mixture model with
two components using expectation maximization (EM). The
Gaussian distributions are only approximate statistics of the
two classes that separate them probabilistically.
Implementation We consider input patches of size 49×49×3
(empirically); and k = 64 constrained convolutions with S =
3 in the first layer. Also, our encoder has a fixed number of
64 filters in every layer. For the prior distribution, we use the
factorized standard Gaussian r(z) =

∏
i Ni(0, 1) proposed in

[11] and train our network using the loss J = JIB + λRRF ,
where we found λ = 1 gives the best results.

We train on the Dresden Image Database [15] that con-
tains 17,000+ images from 27 camera models. For each cam-
era model, we randomly select 70%, 20% and 10% of the im-
ages for training, validation and testing. We use a mini-batch
of 200 patches, and train for 700 epochs with 100,000 ran-
domly selected patches every epoch. We maintain a learning
rate of 10−4 for 100 epochs, then decay it linearly to 5×10−6

in the next 530 epochs and then finally decay it exponentially
by a factor 0.9 over the last 70 epochs. This allows us to
achieve a camera model prediction accuracy of ∼ 80% on the
validation/test sets.

4. EXPERIMENTS & RESULTS

To evaluate our method, we test it on three standard datasets.
However, first, we tune our model by plotting the RD curve
and selecting the optimal parameter β. Then, we conduct an
ablation study to assess the relevance of IB and RFs and lastly,
we compare InfoPrint to state-of-the-art algorithms.

The standard datasets we employ are DSO-1 [19], Nim-
ble Challenge 2016 (NC16) and the Nimble Challenge 2017
(NC17-dev1) [20]. DSO-1 consists of 100 spliced images in
PNG format. NC16 & NC17 contain 564 & 237 spliced im-
ages respectively, mostly in JPEG format. All three datasets
are state-of-the-art, contain hard to detect forgeries and are
accompanied by the ground truth masks. Additionally, we
generate manipulations created by three inpainting GANs,
namely Yu et al. [17], Nazeri et al. [18], Liu et al. [16],
which represent the state-of-the-art in image inpainting.

We use the F1 score and Matthews Correlation Coefficient
(MCC) to score the performances. These are widely used
for evaluating splice localization [1]. However, F1 and MCC
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Fig. 2. (a) Qualitative results showing the superiority of InfoPrint over published methods. (b) InfoPrint vs inpainting GANs:
Liu et al. [16], Yu et al. [17], Nazeri et al. [18]. (c) β selection. Left: RD curve in red. Right: F1 metric on DSO-1. Low
distortion values are observed for β ≤ 5e-3, while a peak in the F1 is observed from 2e-3 to 1e-4.

require a binarized output mask, while our method predicts
probabilities. Although in the forensic literature it is custom-
ary to report the scores for optimal thresholds, computed from
the ground truth masks, we additionally report scores from
automatic thresholding using Otsu’s method which performs
the best from eight other tested methods of scikit-image.
β selection To select β we plot the RD curve (Fig. 2c). We
observe that our model achieves low distortion values for β ≤
5e-3 for the training task. To select β for the forensic task, we
compute F1 scores on DSO-1 for all values of β and find a
peak from 2e-3 to 1e-4 (1e-3 is an anomaly we attribute to
stochastic training). Hence, we conduct our experiments for
two central values, β = 1e-3, 5e-4. Note that zero information
throughput is achieved for β = 5e-2, hence β > 5e-2, e.g.
β = 1 (VAE [13]) cannot perform better.
Ablated models To evaluate the importance of IB and RFs,
we consider i) IP-NoIB: an InfoPrint model with β=0, which
results in only the cross-entropy loss during training, and ii)
IP-NoRF: an InfoPrint model with the RFs replaced by regu-
lar convolution layers with identical sizes.
SOTA models We consider three state-of-the-art (SOTA) al-
gorithms to compare against InfoPrint. SpliceBuster (SB) [5],
is a top-performer of the NC17 challenge [20] that uses one
fixed RF and the co-occurrence of its values to discern forged
regions. SR [7] is a recent approach that has been discussed
above. EX-SC [21] is a recent deep learning-based algorithm
that predicts meta-data self-consistency to localize tampered
regions. We also attempt to include ManTraNet [22], how-
ever, as acknowledged by the authors, it crashed often with
large images. Therefore, we do not include it here. While
SB is a model-based approach with few trainable parameters,
SR has 1,322,942 trainable weights and EX-SC: 76,088,020
weights. In comparison, InfoPrint has 2,029,584 weights (∼
size of SR and 37x smaller than EX-SC).
Results Quantitative results are presented in Tables 2 & 3.
Comparing the ablated models and InfoPrint indicates that

dropping RFs has detrimental effects on performance, while
dropping IB is comparable to SOTA models. However, RFs
with IB has the best performance.

For SOTA, all scores presented in these tables indicate im-
proved results over published methods. The F1 scores indi-
cate improvements up to 3% points over SR, 6% points over
SB, and 15% points over EX-SC on DSO-1, with best scores
on NC16 & NC17. The MCC scores are again high for Info-
Print in comparison to the other methods, with a margin of up
to 4% points on DSO-1 in comparison to SR.

Qualitative results are presented in Fig. 2a and 2b (also
supp. materials). Fig. 2a compares InfoPrint’s predicted ma-
nipulation mask to the ground truth mask and masks predicted
by SR, SB, and EX-SC. The examples come from all three
test datasets. Fig. 2b demonstrates the ability of InfoPrint to
detect the signatures of top-of-the-line inpainting GANs. Un-
fortunately, no standard datasets exist to report quantitative
results. Furthermore, most of the examples are sourced from
the internet and have been already processed, e.g. resized or
compressed. This destroys camera model traces. However,
InfoPrint is still able to localize the manipulations correctly.
Failures (supp. mat.) All methods fail when the input image
is small, e.g. 300×300 pixels or contains saturated regions.

5. CONCLUSION

We presented a novel information theoretic formulation to ad-
dress the issue of localizing tampered regions in digital im-
ages. Using IB, we proposed an approach to learn distinguish-
ing low-level statistics uncontaminated by semantic contents
and showed that it outperformed published forensic methods.
Our IB formulation was also unique because we used it to
learn noise-residual patterns and suppress semantics rather
than the other way around. Additionally, we demonstrated
our method’s potential to detect inpainting operations by re-
cent deep generative methods.
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