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Abstract. In the past decade there has been a significant increase in the use of omni-directional video — video that captures
information in all directions. The bulk of this research has concentrated on the use of omni-directional video for navigation and
for obstacle avoidance. This paper reviews omni-directional research at the VAST lab that address other applications; in partic-
ular, we review advances in systems to address the questions “ What is/was there?” (tele-observation), “Where am I?” (location
determination), “Where have I been?” (textured-tube mosaicing), and “What is moving around me and where is it?” (surveillance).
In the area of tele-observation, we briefly review recent results in both human factors studies on user interfaces for omni-directional
imaging in Military Operations in Urban Terrain (MOUT). The study clearly demonstrated the importance of omni-directional
viewing in these situations. We also review recent work on the DOVE system (Dolphin Omni-directional Video Equipment) and
its evaluation. In the area of location determination, we discuss a system that uses a panoramic pyramid imager and a new color
histogram-oriented representation to recognize the room in which the camera is located. Addressing the question of “Where have I
been?”, we introduce the idea of textured tubes and present a simple example of this mosaic computed from omni-directional video.
The final area reviewed is recent advances on target detection and tracking from a stationary omni-directional camera.

1 Introduction
Omni-directional vision is becoming an important sub-area of vision research, and has now grown to the point of
having its own workshop, e.g. the recent 2000 IEEE Workshop on Omni-Directional Vision. Omni-directional video
processing has already been shown to have significant advantages for robotic applications, [Hon91, YY91, Mur95,
YYM93, YYY95], with a very strong emphasis on its use for navigation and obstacle avoidance. However omni-
directional sensing has many applications beyond computer controlled driving. For example, tele-observation, self-
localization, “mosaicing” and surveillance. Our research on each of these application areas will be discussed. Our
work uses the Paracamera designed by Shree Nayar and now commercially availible from RemoteReality (remotere-
ality.com).

Because omni-directional imaging compresses a hemisphere field of view (FOV) into a small image, maintaining
resolution and captured image quality is quite important, and takes careful design. Before we discuss applications we
very briefly discuss some resolution issues and compare a paracamera image with a fish-eye image.

While the process scales to any size imager, our current systems use NTSC (640x480) or PAL (756x568) cameras.
For a standard 640x480 camera we can compute the horizontal (vertical) resolution as the ratio of the number of pixels
to the horizontal (vertical) FOV in degrees. For example an NTSC camera with a wide angle lens producing a
FOV has a horizontal resolution of ppd (pixels per degree) and a vertical resolution of ppd. For a
wider FOV lens, say 150 degrees, we get 4.2ppd.

Because the paracamera images the world in a circular-like pattern, computing its resolution is more difficult than
for a standard camera. For horizontal resolution, we consider the direction tangent to the mirrors edge, (i.e. circles
centered on the mirror), and for vertical resolution we use the normal direction. If we set the system so that the image
of the mirror fills the image of the CCD we capture an FOV of approximately . The horizontal resolution

along the edge of the mirror, i.e. edge of the region of interest (ROI), is pixels
degrees ppd. If we zoom in to fill

the horizontal aspect of the camera (which limits the FOV to ), we increase resolution to 5.6ppd. From
this we can see that near the mirror’s edge, a paracamera with a FOV has similar resolution to a regular
camera with a FOV. Since both are using the same camera, there must be a loss in resolution somewhere
else. While it may seem counter intuitive, the spatial resolution of the omni-directional images is greatest along the
horizon, just where objects are most distant. As targets move closer to the center of the mirror, the overall resolution
drops by a factor of four.
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Fig. 1.: Left column shows a downsampled version of the 1280x960 fisheye image (top) and a paraiage (botoom).
On the right is a full-resolution version of a small clip from that image (from about 11 O’clock in the room). The
images were taken with the same camera from approximately the same location (though a few people are visible in
the paraimage). The chips shown here are different in height because it takes different amounts of the image to show
similar content. Details, such as gaps in the window blinds, are lost in the fish-eye image but visible in the paraimage.
The ceiling is more visible in the paraimage ( FOV) than the fisheye image ( a.k.a. ).

At this point we note the only way to get close to the paracamera’s FOV without a catadioptric system, would be
to use a “fish-eye” lens. These cameras also have a non-uniform spatial resolution. However, a fish-eye’s resolution is
worst along the edges of the image (and best in the center). For comparison, figure 1 shows images taken with a Nikon
360x90 FOV (a.k.a. 180x180 FOV) lens and with a 360x105 FOV Parashot camera. Even though the Parashot has a
larger FOV, there are many details clearly visible in the paraimage that are lost in the fish-eye image.

While images captured by the Paracamera may look distorted, the underlying image has a single virtual viewpoint.
This single virtual viewpoint is critical for our tele-observation software, as it permits a consistent interpretation of
the world with a very smooth transition as the user changes the viewing direction. While there are other systems with
large or even hemispheric fields of view, as shown in [NB97], fish-eye lenses and hemispherical mirrors do not satisfy
the single viewpoint constraint. The single viewpoint also makes it simpler to back-project rays into the world for
metrology or 3D target localization, e.g. [TMG 99].

2 Tele-observation: “What is there?”
An obvious application of omni-directional video is for tele-observation. The traditional role of cameras in this domain
has been for remote driving. For example, Wettergreen et. al. [WBC 97] demonstrated the use of a panospheric imag-
ing sensor via their long-distance teleoperation of the Nomad mobile robot in the Atacama Desert of Chile. Yamazawa
et. al. [OYTY98] have developed and tested a system for teleoperation based on their hyperboloidal omnidirectional
camera.

While omni-directional video has advantages for the driver, one of its more interesting properties is that it supports



observation by people other than the driver/camera operator.2. Non-drivers may watch the video system either in real
time, or during later playback, and analyze it for items of interest. Because we are researching observation, rather than
operation, we term this application tele-observation.

The use of omni-directional imaging has the advantage that the camera does not need to be accurately aimed.
This observation led us to develop Dolphin Omni-directional Video Equipment (DOVE) — a system for operation
by a marine mammal. Dolphins and whales have the natural ability to quickly navigate and locate potential targets of
interest, even in very low visibility conditions. The idea of DOVE is to allow the mammal to carry a camera to record
the items it finds and bring the video back to a human for analysis. While this could be done with a traditional camera,
the limited FOV would require that the animal be more accurate in aiming the camera, and that it actually point the
camera at all potential targets. By using an omni-directional camera we reduce the demands on precise operation and
also allow the video capture of nearby, but unattended, targets. The tradeoff, of course, is that the targets are smaller
in the omni-directional video and less clearly identified.

The system, pictured in figure 2 is described in more detail in [Bou00], which also includes a full description of
the experimental analysis. In the experiment, runs were made with both an omni-directional and traditional camera,
looking at both isolated and collections of targets. We analyzed the fraction of the time when targets should have
been visible (based on the animal’s location) and when targets were actually imaged. The omni-directional system
maintained good viewing of all targets around 90% of available time, while the traditional wide-field lens only saw all
targets less than 15% of the available time. We note that these animals were well trained to operate regular cameras.
They always obtained good video of something, but when presented with multiple things that could be targets they did
not capture all of them. These tests were done in water with 2-3 meter visibility. For tests in very murky waters, one
would need to be very close to the target. Additionally, large targets require a wider FOV. For these experiments, the
fractions of visible time on targets was significantly different. In addition, in the forward looking camera tests with
two targets, some of the targets were imaged for under one second (briefly seen as the dolphin swam by). Thus, not
only were often out of the FOV, some of them were barely visible.
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Fig. 2.: The DOVE system: A dolphin omni-directional video system.

A second interesting aspect of omni-directional video for tele-observation is that team members other than the
driver can also view the video. For this type of operation there are many different interfaces one might use to view the
omni-directional video, e.g. the raw omni-directional video, a head-tracked HMD that unwarps the video in the direc-
tion in which the user is looking[Bou98], or a panoramic unwrapping of the video. We have been evaluating[PB00],
these interfaces and comparing them to a standard wide-FOV forward looking camera.

The experiments compare different interfaces using a target detection/recognition task. Each user was assigned an
interface and given some time to practice with it. Their task was then to watch a pre-recorded video of a vehicle that
drove through rooms of various complexity and clutter. The targets were a collection of colored boxes, luggage and
people carrying toy weapons. Detection was determined by having the user approximately select the target using a
mouse or centering it in the HMD’s view.

This deserves a formal study



Fig. 3.: Left: an Omnidirectional (Paraimage) taken from an tele-operated car. Right: a dual-panoramic display of a
room. The top is the rear view (left-right reversed as in a mirror), and the bottom is the forward 180 view. This dual
panorama is better suited to a the aspect ratio typical of a CRT.

Fig. 4.: The immersive HMD display, and the view from inside the HMD interface. On the right is the raw forward
looking camera view.

Results from two of the rooms are shown in figure 5. In these graphs, points closer to the origin are better. Ten
subjects took part in this preliminary experiment. From the data for Room 1, we see that the raw omni images out-
performed the other interfaces. Remote reality HMD both did very well. The dual panoramic interfaces were clustered
tightly but did not perform as well. One subject using the standard camera did well, the others missed many targets and
the average for the forward looking interface was the weakest overall. Based on resolution/FOV tradeoffs one might
expect the forward looking performance we found: a low false alarm rate but a high miss detection rate. For Room 2,
which had more clutter, there were targets that were never visible directly in front of the vehicle. For this environment,
the dual panoramic interface was better, and the raw omni interface second best. Here the HMD performed better
in total detections, but had more false alarms. Again, the subjects using forward looking cameras had the poorest
performance. Even more surprisingly, they had slightly higher false alarm rates than the users of other interfaces.

The experiments are still ongoing, using a larger set of subjects. The preliminary data indicates that for tele-
observation, omni-directional interfaces have strong advantages. The best choice between the various interfaces to
the omni-directional video, however, depends on the level of clutter and (possibly) the user’s experience. We are also
extending these experiments to teams of observers. and to include tele-operation, i.e drivers, as well.

3 Textured tubes: “Where have I been?”
While the tele-observation is one way to summarize where the vehicle has been; it is also quite demanding on the
human observer. Even at five-times normal playback speed, this is time and attention consuming. The total data size
is huge. We have been developing an alternative for our ongoing work with mobile robots. The idea, which we call
textured tubes, is to build a mosaic generated locally as though one is looking perpendicular to the wall. This is not a
true panorama, but a type of orthographic-like strip mosaic, [RPF97, PJ97].



Fig. 5.: Left shows results for the first room, the lab. The right shows is the results for the second room, a highly
cluttered office environment.

Fig. 6.: An original omni-directional image from a hallway and one half of the textured tube that results (from the left
half of the hallway).

Imagine a robot is moving at constant speed down the center of the tubular world. Our goal is to recover the texture
that would be on the walls of that tube. As the robot moves, the real-time video is captured. From this omni-directional
video, we determine which strips map to the section of “tube” wall perpendicular to the robot’s current location. These
strips are then added to a mosaic (see figure 6). After processing, the robot has summarized the world as a mosaic
textured-tube.

Of course the world is not a simple tube. In addition, the vehicle does not always move at a constant speed and may
often be rotating as well as translating. Thus, building the textured tube is not just a straightforward mosaicing issue.
The omni-directional video is important because it allows us to capture the needed slice independent of the vehicle’s
location. We also expect to exploit it to estimate the vehicle’s ego-motion. Without knowledge of speed with respect to
the environment, it is difficult to determine the rate at which the mosaic should be extended. For example, in figure 6 we
see a “compression” of one of the doors in a region when the vehicle was moving faster than the algorithms estimate.
We also note since the apparent velocity of a point depends on its distance so do does the proper sampling/update rate.
For simple environments with planar walls, this is not too difficult. For general outdoor navigation, it is a challenging
problem as the proper solution to this requires estimates of object distance. The following equation determines how
often a sample should be taken.

(1)

where is the focal length in meters, is the estimated depth of object in meters, is the resolution of the image in
pixels per meter, is the speed of the camera in meters per second, and , is the sampling frequency in seconds
/ pixel. If we want to take a five pixel width strip, then the sampling frequency is divided by five to determine how
often a sample should be taken.

4 Location Recognition: “Where am I now?”
Another recent application of omni-directional imaging is location determination. For image-based localization, dif-
ficult problems include determining where to point the camera, and image/model registration. By using an omni-
directional camera, pointed upright, we can produce a system that captures a consistent view variant only to rotation.
However, an orientation insensitive technique and a reference map are still needed. Our solution was to treat this as
an appearance-based recognition problem. We wanted to recognize the room we were in from a set of features com-
puted from known rooms. We also were looking for a very compact representation that required minimal processing
to support small mobile robots.

Color is a very important cue in extracting information from an image, and color histogram comparison has recently
become a popular technique for image and video indexing[SB91], [SO95], [LD95], [NM95], [Pan96]. The popularity



Fig. 7.: Left: Images from six different rooms. Right: Images taken in one room at different times.

of color as an index resides in its ease of computation and effectiveness[LM97]. Some papers suggest that color
histograms are resolution independent. It is obvious that when actual bluring occurs, rather than sub-sampling, color
histograms depend on the resolution, as high-frequency color textures blur together to form different colors. This is,
after all, what color dithering in color printers depend upon. Thus, we include multiple resolutions in our analysis as
this will capture a bit of the color texture information as well.

In this application we used images taken using a panoramic pyramid, [YB00], which allows us to generate a multi-
resolution image using optics. We used a two layer pyramid, which allowed the system to capture textures at two
resolutions but also kept a large FOV. The images were taken from about four feet off the floor and captured much of
the walls as well as the ceiling, see figure 5.

Our representation is based on the location of peaks in the Hue (H) and Saturation (S) histograms computed from
the panoramic pyramid images. By using the peaks instead of the whole histogram, we significantly reduce the size of
the representation. This also makes it less sensitive to minor variations in lighting and scene composition. The latter
is important since the lighting may change and the camera will probably not be in the same location as when the
reference image was taken. The system currently uses only 7 peaks in H and S to represent the image. There are many
details in the histogram peak detection system that cannot be discussed here because of lack of space in this paper.
The interested reader should consult [SB99, Sab00] for details.

To evaluate the performance of the approach, we acquired a database using room images with large varieties,
and also included a number of similar rooms. Rooms to be included in the database are taken under their normal
illumination. For many rooms, the color distributions are similar regardless of changing camera location. For some
rooms, especially larger ones, different locations that result in significant occlusion or disocclusion of colors are treated
as separate entries in the database, but are labelled as the same room location. The database containeds the histogram
peak representations of 205 distinct rooms. As an invariant indexing feature of omni-room image, the color histogram
peaks were computed from an image captured at approximately 12:00 noon.

We then conducted a series of recognition experiments using the omni-room image database obtained from 205
rooms by using peaks. The histogram peaks from a test image are used to index into the database. We tested perfor-



mance on room images from different locations and different illumination conditions (using images taken at 9 AM, 11
AM, 1 PM, 3 PM, 5 PM and 7 PM). Figure 7 illustrates some example of omni-room images in our database. In our
experimental setup, all images were obtained using a custom panoramic pyramid system. While obtaining the room
images, people and all other objects were allowed to move freely in the room.

Overall testing with this database of 394 images from 205 rooms produced a recognition rate of 92 percent. Many
of the failures occur at extreme lightning changes, confusing very similar rooms (as often occurs on a college campus),
or with moderate variations in camera placement within the room. Details can be found in [SB99, Sab00].

5 Surveillance: “What is going on around me?”
For surveillance applications, especially against adversarials, targets may attempt to conceal themselves within ar-
eas of dense cover and sometimes add camouflage to further reduce their visibility. Such targets are only visible
while in motion. The combined result of limited visibility and target visibility severely reduces the usefulness of
any panning-based approach. As a result, these situations call for a very sensitive system with a wide field of view,
and are a natural application for omni-directional video. We have recently developed and demonstrated a frame-rate
surveillance/tracking system we call Lehigh Omni-directional Tracking System (LOTS); see [TMG 99, BME 98]
for details.

The LOTS system builds on the basic omni-video property that the system can watch a large area without moving
the camera. Thus the system is able to build a good background model. In LOTS, there are two backgrounds per pixel
that are blended with new input images over time. This allows the system to handle certain natural motions that result
in oscillitory disocclusions, such as trees swaying in the woods. The system has an explicit lighting renormalization
process that is applied to each target. This normalization allows it to better handle shadows (This lighting normalization
process also has access to a third background model that is never “blended”). The system uses a thresholding with
hysteresis processes and a novel region connection process we call quasi-connected components. This process allows
the system to detect and track small targets (six pixels on target) and have high sensitivity. For examples, see figure 8.

Fig. 8.: Left shows LOTS tracking targets system with a single perspective “target” window showing the most signifi-
cant target unwarped. (With a left-right reversal because of mirror.) The middle shows the tracking of a sniper moving
in the grass. The sniper’s camouflage is quite good, but careful background differencing allows LOTS to detect the
motion. Frame-to-frame motion is small; a good sniper may crawl at under 0.5 meters per minute and be motionless
for minutes at a time. The right shows tracking of soldiers moving in the woods at Ft. Benning GA. Each box is on a
moving target. The multi-background modeling and thresholding with hysteresis are important parts of the system and
allow it to ignore the many moving trees in this scene, and also help connect the soldiers in spite of their camouflage.

After tracking the targets the system uses its single-viewpoint model, and a local model of the ground plane, to
back-project and locate the 3D position of the target. The system can track multiple (up to 64) targets simultaneously,
and maintains 3D tracks of their motion. There are a number of heuristics that estimate target confidence. Using this
the system unwarps the top N targets. In ongoing work we are extending this to coordination of multiple omni-cameras
with a very long baseline (10-20 meter) stereo.

Evaluation of this type of system is non-trivial and somewhat subjective. LOTS has been demonstrated numerous
times, usually “demonstration” sessions are informal and have cooperative targets that are easy to track. For the
intended applications there is significant occlusion and camouflaged targets. In these situations it is often hard to say



if a target should be visible or not. It is also not clear when something is a false alarm as compared to a previously
unseen animal/insect or a new motion pattern for brush that might be worth investigating. An external evaluation of our
system was done in conjunction with researchers at the Institute for Defense Analysis, where their goals were to see
how well video surveillance and monitoring could be used to support small unit operations. The scenarios evaluated
included: a short indoor segment, two urban/street scenes, a town perimeter (town edge and a nearby tree-line), two
different forest settings, and a sniper in a grass field. For the forest and field scenes the evaluation was limited to a 2-4
batch minute “learning” phase for acquiring the multiple-backgrounds; the others had at most 30 seconds of learning.
No “learning” based on feedback on false alarms was allowed.

Certainty Certainty
Scene type Detection Rate FAR Detection Rate FAR
Indoor 1 100% 0.18 100% 0.0
Intersection 1 89% 0.33 89% 0.0
Intersection 2 87% 0.83 62% 0.0
Town Edge/Field 95% 0.90 92% .34
Forrest 1 (1min train) 92% 1.71 NA NA
Forrest 2 (4min train) 100% 0.60 76% 0.0
Field (sniper) 100% 1.06 82% .10
Mean 95% 0.80 NA NA
Std.Dev. 5% 0.50 NA NA

Table 1.: Left shows an example from the DARPA VSAM IFD demo with 3 perspective windows tracking the top
3 targets. In the paraimage targets have trails showing their recent “path.” Right is a table from the first evaluation.
The chart shows frequency of detection and False Alarm Rate (FAR) per minute of the basic LOTS tracker as of
Aug. 1998 (before lighting algorithms) and without adaptive feedback. Main sources of false alarms were about 60%
“uninteresting” motions (e.g. leaves and bugs) and 30% lighting& shadows.

The summary analysis is shown in table 1. Almost all detections were considered “immediate,” with only the most
difficult cases taking longer than a second. In the forests and field, most of the missed detections were targets with low
contrast moving in areas where there were ancillary motions (i.e. where the system’s multiple backgrounds entered
a state that reduced sensitivity). In the intersection scenes, most of the missed targets were either too small (but with
enough contrast that the human could see them), or in areas with ancillary motion and multiple backgrounds. The main
False-Alarms in the town scenes were lighting/shadow effects while branches, animals and bugs were dominant in the
forests and fields.

At the time of this initial external evaluation, the only region cleaning phase was area based. A large fraction of
detected false alarms were small to moderate sized regions with lighting related changes, e.g. small sun patches or
shadows. In a wide field of view, many of these lighting effects can produce image regions that look like a person
emerging from occlusion or a moving low-contrast vehicle. The “ghosting” of targets was also noted in their report,
wherein a target that is still for a while leaves a false-target in the region that it disoccludes. This feedback lead to
additional cleaning phases, in particular the new lighting normalization testing. Our updated system is a component in
a SUO/SAS (in a project lead by CMU) that is being installed at Ft. Benning and will be evaluated in field operations
sometime in 2000.

Readers can find videos as well as raw data for testing at http://www.eecs.lehigh.edu/t̃boult/TRACK/. Note for
effective transmission on the web the “results” are MPEG files that have sacrificed some image quality for the sake of
compression.

6 Conclusions and Future Work
Omni-directional imaging systems are, quite literally, changing the way we see the world. They have many properties
that are candidates for exploration by vision systems, and the applications presented here highlight a few of those prop-
erties. The wide FOV means that camera orientation is not critical, which allows for less sophisticated camera operators
(dolphins), a simplified room recognition process, and the ability to generate textured-tube representations. Combining
its single view point imaging model with its hemi-sphere FOV allows for immersive video systems, tele-observation
and also support surveillance systems. We are continuing to expand our research in each of these directions as well
as developing new applications. Of particular focus is refining/extending the textured tube technology, combining the



textured tubes and histogram peak technique to provide a verification stage and possibly an online “control” algorithm,
more sophisticated human interface experiments, high resolution panoramic pyramids and new sensor platforms.
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