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Abstract. Deformable models in the “physically-based” paradigm are
almost always formulated in an ad-hoc fashion, not related to physi-
cal reality — they apply the equations on physics in a fantasy world.
This paper discusses some of the drawbacks of this approach. Still these
techniques have shown themselves to be useful, so there must be some-
thing here. This paper reinterprets these “physics-based” techniques by
putting them into a framework of robust statistics. We use this frame-
work to analyze the problems and ad-hoc solutions found in common
physically-based formulations. These include incorrect prior shape mod-
els; bad relative weights of various energies; and the two-stage approach
to minimization (adjusting global, then local shape parameters). We ex-
amine the statistical implications of common deformable object formu-
lations. In our reformulation, the units are meaningful, training data
plays a fundamental role, different kinds of information may be fused,
and certainties can be reported for the segmentation results. The robust
aspects of the reformulation are necessary to combat interference from
the necessarily large amount of unmodeled image information.

1 Introduction

Deformable models have proven to be a useful tool for finding shapes in image
data, for addressing both segmentation and model acquistion. This paper exam-
ines two views of the same processes: the first is the “physics-based” analogy; the
second 1s an interpretation in terms of robust statistical estimation. The physical
analogy, however, is an analogy to a “fantasy world” where data actually exerts
force on the model and materials have elastic properties unrelated to the actual
object, e.g. one can have a model deforming to describe a bone, despite the fact
that the bone is very rigid!

While the physical analogy may help some understand the fitting process
and be useful for graphics designers, we believe it leads to many problems for
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vision/recover systems and may hamper future developments. This paper ex-
amines the assumptions that are usually made when formulating a deformable
model, and the issues that are neglected. An example of the difficulties is deter-
mining the proper relative strengths for the various “forces” which is, at best,
problematic because their natural units are not forces . What for example, is
the proper conversion from image gradient magnitude to Netwons? What about
the conversion for distance from a hand segmented image contours or SPAMM
markers? The answer, unfortunately, is that the researcher must makes these
transforms up so that the fitting behavior is acceptable — they invent a fan-
tasy world where their algorithms appears to do the right thing. Because the
physical analogy 1s weak, we have introduced the phrase, “physically-motivated
techiques” to describe them.

We suggest a probabilistic paradigm for formulating and analyzing this re-
covery process. The important difference between this formulation and previous
probabilistic formulations 1s that many of the newer “forces” and scheduling
techniques used in the “physics-based” view can be interpreted as using robust
statistical techniques as opposed to traditional Bayesian techniques.

It is computational intractable to model a shape’s probability directly from
all the pixels in an image and their correlations. It is also quite difficult to
precisely define a meaningful “optimum” shape and even if one did, finding the
globally optimum shape is only tractable for trivial cases. Thus, one must treat
some aspects of the image as having unknown, possibly adversarial distributions
producing image data which will lead to a false segmentations. The techniques
of robust statistics are designed to minimize the damage caused by unmodeled
data. This may involve reweighting our objective function so as to gradually
trade robustness for accuracy as the optimization proceeds.

In the next section, we explore the basis of deformable modeling. We then
discuss the shortcomings of existing practice. We then discuss a probabilistic
formulation and show how to interpret known effects and existing practices in
this framework, and suggest improved approaches.

2 What are Deformable Models?

This section provides an overview of deformable models. Those familiar with
them can probably skip it.

Deformable (or active) models are curves or surfaces that iteratively deform
from an initial state until they lie on or near structures in the 2D or 3D image
data. The process that moves them combines “forces” that are determined from
the image and from the current shape of the model. In the original formulation
[KWT87], an active contour (“snake”) is manually placed near a desired bound-
ary 1n a 2D image. It changes shape and position, subject to internal stiffness
forces and to attraction by nearby pixels of high gradient. It iteratively responds
to these forces until it stabilizes at a position which is a compromise between
sitting along the boundary (strongest edges) and maintaining smoothness.



A deformable model can be a discrete chain or mesh of node points connected
by length constraints (spring, tension) and stiffness constraints (curvature). This
is a finite difference model (FDM). It can also be a finite element model (FEM),
which is made up of continuous parametric segments or patches, connectedf by
continuity constraints. In an FDM, forces of image attraction act only on the
nodes, whereas in an FEM, they can act on any point, or all points, of an element.
The model may also be represented as a continuous parameterized global shape,
as a sum of global shapes (modes), or as a global shape with patches representing
local deviations [TM91].

A deformable model is usually formulated as a object with simple physical
properties which define its potential energy. This energy i1s composed of various
terms; those which do not depend on the image are divided into internal en-
ergies, user energies. and external or image energies. Typical internal energies
are related to node distances, bending and curvature. These usually have their
squared magnitude summed over the curve or surface. They often simulate the
potential energies of mechanical entities such as springs, stiff rods or thin plates.
User forces, e.g. balloon forces [Coh91], push the model outward or toward some
point. Typical external energies assign strengths to image pixels or edgles, e.g.
using intensity or gradient magnitude multiplied or divided by (often squared)
distance. The form of the energy terms are often usually selected to make the
solution of a differential equation quick or in partially closed form. The energy
function’s negative gradient, a vector in parameter space, is the “force” which
moves the shape parameters to reduce the energy. In this way, a local energy
minimum is sought. We must trust that the initial placement of the model was
close enough that the local minimum we found was the “right” one.

Differential equations are set up to simulate the model’s movement. These
equations sometimes include such physical quantities as mass and viscosity, to
stabilize the solution [LL93].

2.1 Analysis

In this section we motivate our approach to deformable models by analysing
some of the problems that exist in current formulations. We believe the primary
source of these problems is the ad-hoc analogy used for recovery. It manifests
itself in many ways, of which we will discuss a few.

Inappropriate “Prior” Model Shapes: If there are no data forces, the
process produces a shape which is its “prior” or rest state. Internal energy terms
which penalize surface curvature may result in model prior states which in no
way describe the object under recovery. Smoothing terms which seek to minimize
the total size/bending of the finite elements composing the surface are extremely
common in the deformable modeling paradigm [CC90, LL93, KWT87, TM91].
Unfortunately, one way to minimize these values 1s to shrink the element. As a
result, the rest or prior shapes for many of the models are unlikely to resemble
the object of interest. For many snake algorithms; e.g. [KWT8T], the rest-shape



is a single point. That is, given no data, the model disappears! And even in the
presence of image data, there is always a force pulling inward, so the model will
reach equilibrium somewhere short of the object boundary.

In a small subset of deformable model literature, e.g. [LL93, LC9Y4], the
internal stiffness force is modified to penalize each element based on its difference
from an a priori specified “preferred” element size. By doing so the models will
not disappear in the absence of data, but can be viewed as having an expected
shape of either a straight line with fixed size links (for open snakes) or a circle
formed from fixed-size links (for closed).

Large Perturbations of Linear FEMs: Almost all of the deformable ob-
ject literature in vision and graphics has used FEMs, in particular linear FEMs.
These are designed for “small” perturbations from an initial state.> However, in
the case of weak priors, the model are required to undergo large deformations!

The linear FEM provides a first order approximation to the stiffness proper-
ties and is generally valid only in a local neighborhood [Bat82]. Inappropriately
initializing a model and depending on, for example, balloon forces to push the
model towards the data may result in an extreme distortion of even well cali-
brated model stiffness properties.

There has been more recent work on building global object models with
FEM model on top of them. In particular, [TM91, PMY94] consider fitting an
superquadric to an underlying model and then using an FEM surface to account
for the remaining details. In [PS91], a global model using low order modes is
recovered, and then a spline surface is fit on top to account for remaining de-
tails. This does reduce the magnititude of deformations, makine FEM models a
better approximation. In both cases, however, the underlying model is a gener-
alized blob that is a very rough approximation. For most objects, the resulting
deformations are still moderatly large in size. In our recent work, [OFBG94], we
build the FEM mesh ontop of a generalized cylinder to allow a more rest state
with more detail. Still the deviations may be too large for a linear FEM.

Difficulties Using Residual Data Forces: We define residual forces as
those which tend to zero as the distance between model and data tend to zero.
An example of residual forces are segmented data forces (long range forces in
[TM91]) which are weighted distance between a model point an a data point.
Residual data forces also occur when the image energy is the magnitude of the
Gaussian-blurred gradient through which the shape passes. The image force goes
to zero as an image edge is approached.

Under existing deformable model paradigms if the model is endowed with
material stiffness 1t becomes impossible for it to deform to interpolate the data
in the presence of “residual” data forces, even if that data has no noise! In the
case of noisy data, the answer is likely to be biased.

? Exceptions using non-linear FEMs include [TW93] and [HG93].



On careful reading, one might notice that in many of the deformable modeling
papers the reported “stiffness” parameters are set to very small values,* which in
turns allows the surface to nearly interpolate the data. It also means, however,
that in regions of little data the surface is free to wobble and curve with little
internal constraint.

Another way in which researchers have circumvented this problems is by
“inventing” new forces such as a “balloon forces,” [Coh91]. These forces are not
predicted by the underlying physical analogy as they are neither material forces
(stiffness) nor data (image) forces. Rather they are extra forces which, in an ad
hoc fashion, force the equilibrium point to be “closer” to the data. (They are
also used to provide an initial force to get the model near the data.)

How to determine weights For Data Fusion? The methods in the cur-
rent literature for determining the scaling values for data forces and material
properties are quite ad-hoc, when described at all. In the case of a stiff model
being influenced by noisy data, how should the the data forces and material
stiffnesses be scaled such that the “best” fit is arrived at? That is, how should
the internal and external forces be related? These questions are by and large
ignored by papers in the deformable model community. A related question is the
fusion of information, how should different types of external forces, be related to
one another in the “physically-based” paradigm? Determining the proper rela-
tive strengths for fusion of these external forces is, at best, problematic because
their very units differ! Even the units of internal energy (stiffness) and external
energy (data forces) don’t match. What, for example, is the proper conversion
from image gradient mangitude to Netwons?

In some of our prior work on surface modeling via regularization, the multi-
sensor fusion problem was examined using stereo and texture information. The
weighting of information directly determined the success of the integration, see
[MB88]. Without a firm understanding of how the scales sould be determined,
fusion is extremely difficult.

“Efficiency” Hacks: Various systems for deformable object models, includ-
ing [TM91, OFBG94, OGB94] include code for “parameter scheduling.” This
code is used to insure that in the initial stages of the recovery, only global pa-
rameters are adjusted. When the global parameters have settled, adjustment of
the local parameters begins. There are two reasons for this parameter scheduling.
The first is to reduce computation time; the second is to provide robustness—if
the local parameters are allowed to adjusted too soon they can “latch” onto a
strong feature that is not part of the object of interest.

While it has advantages, is this method likely to give us the “best” solution?
Without some solid foundation for judging the “goodness” of a fit it is impossible
to tell what the efficiency costs in terms of fitting.

* For example in [TM91] the stiffness measures are of magnitude 107°.



Poor Justification for Results: Given the ad-hoc nature of current ap-
proaches, justification of results to users such as radiologists becomes an issue.
In most physically-motivated applications the stiffness and data forces are in re-
ality selected based what works for some small test set of data. Thus it becomes
impossible to state, for example, that a segmentation performed yield the “best”
estimate of the object contour given the data and some prior knowledge of the
domain. If a deformable modeling system is to be used in clinical medicine, hav-
ing a justifiable interpretation of the process is not just an academic issue, it is
a prerequisite to acceptance.

3 A Robust Statistical Approach to Deformable Modeling

In this section a novel view of deformable model recovery is presented. We claim
that the weaknesses of existing methods outlined in the previous section may be
overcome by recasting deformable object modeling as a robust statistics problem.
In doing so it becomes possible to give meaning to both external and internal
forces and thereby create a solid basis from which to interpret recovery results.
In addition, results may be reported with confidence levels indicating the degree
of success. Finally, the training necessary for any recovery system is integrated
into the paradigm at a fundamental level.

In the context of robust statistics, more specifically M-estimators (see below),
deformable modeling becomes a question of relating sensor models, data uncer-
tainty, model uncertainty, and the uncertainty in our uncertainty distributions
to arrive at a solution of maximum likelihood.

We believe this strategy will provide a solid foundation upon which to ana-
lyze existing assumptions and techniques and to propose new methods including
new “force” formulations and novel “stiffness properties” rooted not on some
preconceived notions about how the prior models should behave but rather on
actual deviations from the expected model gained from training instances.

Giving Meaning to Forces and Stiffness:  While there are lots of impres-
sive equations supporting the “physically-based” paradigm, data points are not
spring forces acting on a spring-like contour or surface. Furthermore, the mate-
rial properties of the model may be completely unrelated to those of the object
undergoing recovery — one can have a model deforming to describe a ceramic
plate, despite the fact that the ceramic is rigid! Because the physical analogy
does not hold, we prefer to have introduced the phrase, “physically-motivated
techiques” to describe such approches.

As we shall see, the statistical interpretation is also very intuitive. A material
that is “unlikely” to deviate from its base shape has an uncertainty measure that
is more concentrated around the base shape, similar to a sharp energy peak. Data
of which we are more certain will also have a more concentrated probability
measure, hence larger (but shorter range) forces. If the data is known to be
perfect the force would be arbitrarily strong resulting in the interpolation of the
data. Similarly, the confidence in the correctness of that initial shape, (i.e., its



predilection for maintaining its initial shape) relates to stiffness of deformable
models. If the object under recovery is unlikely to have a particular form the
model stiffness will penalize a deformation towards that form.

Reporting Confidence Levels: In the probabilistic framework it is possible
to report confidence levels for individual results thereby enhancing their value. In
any experimental science a result lacking an error bound is a nearly useless result.
Up to now errors in physically-motivated recovery have been demonstrated but
not well analyzed. Such demonstrations give an indication of how well a similar
case might do. By approaching recovery from a statistical point of view, however,
it becomes possible to provide a confidence level appropriate for each individual
experiment based on the confidences in the appropriateness of the prior model
and the fidelity of the data for that experiment.

Such confidence levels provide several advantages. First, they create a means
for determining the general predictability of a technique. Second, they lend a
quantitative basis for disregarding certain recoveries as unlikely. Finally, they
enable us to justify our results to end users. Doctors, for example, have knowledge
of statistics and will be more likely to understand and embrace results based on
statistics rather than on an imperfect analogy to the physical world.

Training can be integrated into both the internal and external force formula-
tions at a fundamental level — the forces themselves are probability distributions
to be calculated via training. The relative scaling of these forces becomes a prob-
lem of relating probabilities, a basic computation in statistics. And the units of
these “forces” are no longer at issue since they are probabilities. Finally by in-
voking the powerful tools of robust statistics an appropriate prior model may be
arrived at.

3.1 The Probability Framework

In this section we explore the probability formulation of deformable models. We
shall discuss prior work in this area after discussing most of the issues, so that
it can be examined in the light of these issues.

The probability we want to maximize with our deformable shape is P(S | 1),
the probability of S being the “right” shape given that I is the image. Of course,
since any single configuration has infinitesimal probability, P actually represents
a probability density function. We are trying to find the following:

arg Hl;iXP(S | I) = arg mgxw = arg mfgxw

When looking for the S that maximizes this, we can ignore the denominator,
P(I), because it is constant with respect to S. It is the probability of image I
occurring, without knowing S. Tt is useful to decompose P(S AT) into P(I | S) x
P(S) because each of the two factors can be efficiently approximated. Let us
examine each factor separately.
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Fig. 1. When a shape’s prior probability is combined with the probability that its
boundary could have produced the image edges, MLE may not lie on the edges. The
cure is either an image probability that does not level off at its maximum, or a prior
probability that is flat around the shape in question.

P(S) is an a priori shape model, a function which measures the inherent
likelihood of the shape regardless of the image. It can penalize unlikely sizes,
positions and curvatures. Note that this corresponds to the internal energy—all
components of the energy which do not depend on the image.

P(I | S) penalizes a shape if the image does not correspond to it. The image
energy is derived from this. It is often simply and efficiently modeled as a function
of only those image features that are close to shape S. This is a plausible move
if nearby features (e.g. intensity and gradient at different resolutions) are found
to have roughly the same distribution of strength wvs. distance from S regardless
of what S is. However, this assumption, along with what data is being thrown
away, should be examined before this simplification is used.

3.2 Mapping Probability to Energy

In the framework of mazimum likelihood estimation (MLE), the problem of max-
imizing a probability is often converted to the equivalent problem of minimizing
its negative log. So, for instance, we may have a set of independent Gaussian ob-
servations y;, each of known variance 02, generated from known z; by a function
y(; a) with unknown parameters a. Finding a that maximizes the joint proba-
bility of the observations is equivalent to solving a least squares minimization:

arg HléiXP(Yl =y AYa=y2 A L) = argm;mxH P(Y; = w)
_ —L(yi—y(zsa))*/o? _ : 1o a))2 /a2
= argms [[ e 20000 angin 3 o — y(ass )/

Thus, minimizing a sum of energies can be equivalent to maximizing a prod-
uct of probabilities if £ = —In P. It is useful to have a sum because it simplifies
integrals and partial derivatives (which give us the force). This same probability-
energy equivalence is well-known from the Gibbs distribution used for Markov
random fields. It is useful to us as a way of formulating the energy of a deformable
model, or of analyzing the probabilities implied by an energy formulation.



In all formulations we are aware of, several kinds of energy are added, and
they need some kind of relative weighting. Since the units of the individual
terms are unrelated, it is not at all clear what these weights should be! But with
a probability-energy equivalence, there is no question of weighting. Once the
separate probabilities are known, adjusting them with weights makes no sense.
In other words, the “calibration” of relative energy strengths takes place during
the estimation of probability distributions (perhaps from training data, perhaps
from models of the domain and sensor). This framework makes it possible to
intelligently integrate different kinds of information, for instance images from
multiple sensors. (It may, however, require a goot bit of work.)

The energy minimum achieved is equivalent to a confidence level in the final
answer. Thus, the absolute certainty of the locally minimum-energy shape is
known, and poor segmentations can be rejected.

Addressing Stiffness Problems:  Consider a shape S for which P(I | S) is
at a local maximum but P(S) is not. If both are positive and differentiable then
their product will not be at a local maximum. Thus, if S is the shape that best
explains the data, but not the a priori most likely shape, then the segmentation
process will not choose this shape. How far off the maximum will be depends
on how sloped is P(S) and how sloped is P(I | S) in the neighborhood of the
maximuin.

What does this mean intuitively? That even for a high-likelihood, noiseless
image, the segmentation will err. The problem is that a smooth energy maximum
produces a force that goes to zero. When any other force is added, the total force
at the (former) maximum now points elsewhere. There are two ways to fix this:

1) Make P(I | S) have a nondifferentiable peak when S approaches a suitably
strong image edge. This way, imposing a bias from P(S) does not change the
location of the maximum; the image force does not approach zero at the edge.

2) Make sure P(S) is nearly flat for any reasonably likely shape S. This makes
the internal force close to zero for such S’s.

Do we want P(S) to bias the maximum of P(7 | )7 We probably do not
want 1t to bias S’s position toward some a prior: position—we want to trust
the image edges. But we may want to bias the shape away from bumpiness. In
this case, P(S) should be flat over a reasonable range of positions then fall of
quiclky.® Tt should not necessarily be flat with respect to other parameters such
as “excess” curvature.

Some formulations define the image energy as linear in the distance to the
nearest edge. Such a linear potential satisfies the first of the two conditions
above—it is pointy; its gradient, the force, does not approach zero near an edge.
Inverse distance also has this desirable property. But squared distance lacks it.

We may get unsatisfactory segmentations if the prior shape model, P(S5), is
not good. For example, if (as is usual practice) the function penalizes any kind

® Obviously, if a probability is to have almost no slope over some range of a parameter
but then fall of quickly, it cannot be Gaussian in that parameter. So the shape’s
position in the training images may not be well modelded as Gaussian.



or amount of curvature, the model will be biased away from the object boundary
in even the most exemplary image, unless that object happens to be a circle,
sphere, line or plane. If there is an expected shape, the correct thing to penalize
is deviation from that shape.

Finding a Gradient to Follow: If we were to accurately model the distri-
bution of edge distance from underlying shape in a non-noisy image, we would
usually find that the edges were all within a few pixels of the shape, unless they
were caused by some other object. Thus, the probability of an edge, given a
shape, would reach zero (or some constant nonzero noise level) a few pixels away
from the shape. It 1s worth noting that a Gaussian would be a very inappropriate
model. The optimal shape would need to lie very close to the image edges.

But we encounter a problem when we place an initial approximate shape in
the image. Under such a probability distribution, the image force (probability
or energy gradient) that is to deform the shape will be zero unless the initial
approximation is correct to within a few pixels. Though we would like the shape
that maximizes this probability, the image force will not get us there. A reason-
able solution is to blur the image energy, at least initially, so the gradient from
the strong energy minimum reaches the model. Later on, though, we will want
to be using the correct energy function.

Thus, even if our probability model is correct, our minimization process may
need to use knowledge about the properties of the domain, rather than simply
following a gradient.

3.3 Robust Statistics

In many applications, image edges are not just caused by the object we seek or by
sensor noise. There are usually other objects in the scene. Thus, an image energy
which reacts to edges as if they were made by the object we seek becomes more or
less accurate depending on the distribution of unrelated edges. To model image
probability correctly, image energy would have to discriminate between “bad”
edges and “good” edges. While we could make some headway by incorporating
expected color, gradient and other properties, we would still have little hope of
reaching the desired energy minimum by simply following the energy gradient.

So instead of attempting to model extrinsic edges, we may treat them as
largely unknown, and try to figure out how to limit the information that goes
into image energy so that such “adversarial” edges can do minimal damage. This
would make the image energy a robust statistic.

A robust statistic 1s an approximation of some other statistic which reduces
sensitivity to “adversarial” (unmodeled) data. For instance, an average can be
perturbed arbitrarily much by a single outlying datum; yet, in the absence of
outliers, the average, or “central tendency,” may be the statistic we seek. The
median is a measure of central tendency that asymptotically approximates the
average, but it is more robust—a fixed number of outliers can only change it
by a fixed amount, no matter how bad those outliers are. We are interested in



two qualities of a robust statistic: Efficiency which measures how well the robust
statistic approximates the desired statistic. And the breakdown point measures
what percentage of bad data it takes to degrade the result a certain amount.
(The average has a breakdown point of zero.)

Robust techniques are generally used to deal with uncertainty in the un-
derlying probability distribution or to handle “outliers”, data that does not fit
the uncertainty model. Recasting deformable object modeling as a robust M-
estimation problem will help us to analyze the existing assumptions and tech-
niques, and to propose new ones. Robust estimations are becoming used in vi-
sion, with M-estimates and “median” based techniques the most common, e.g.
see [MMRK91, MB93].

Let us consider the definition of an M-estimate as defined in P. Huber’s classic

text ([Hub81, page 43]) on robust statistics:
Any estimate T,,, defined by an minimum problem of the form:

Zp(xi;Tn) = min! (1)

or by an implicit equation

Z¢(x2aTn) =0, (2)

where p is an arbitrary function, (x;0) = (0/900)p(x;0), is called an
M-estimate or mazimum likelihood type estimate. [Nole that for the
choice p(x;0) = —log P(x; 0) gives the ordinary ML estimate].

In the above definition, T;, is the set of n dependent parameters of a model,
each z; is an independent parameter (data) and “min!” is a compact way of
expressing a minimum over all dependent parameters, 7},.% The interpretation
here is that p is a collection of uncertainties and one seeks to find the set of
parameters with minimal cumulative uncertainty. The uncertainty captured in
p could be data uncertainty, modeling uncertainty, or even uncertainty about
uncertainty models used in the computation—the form is quite general. If one
replaces p(x;0) with —logP(x;8) the formulation defines maximum likelihood
estimation, hence the name maximum likelihood-type estimator or M-estimator
for this more general formulation. Note that robust statistics books are quick to
point out that the definition in terms of ¢ may only find local minima. A classic
example of an M-estimate is when p is the sum of squared distances between data
points and associated model points. This is least squares modeling, which is the
maximum-likelihood estimator for i.i.d. Gaussian noise. Robust M-estimators
include weighted least-squares and trimmed least squares, which are sometimes
called S-estimators).

We are not the first to note the relationship between deformable models
(splines), energy formulations and uncertainties. The relation is over 25 years
old—see [KW70]. The Gibbs energy formulation defines such a relationship and
has been used in many areas including vision, especially in MAP/MRF stud-

5 The original definition denotes the data uncertainty distribution with the symbol f,
but in this paper we will denote this probability distribution as P.



ies; see [Sze89, ST89, GGI1, VRI3]. All past work (as known to the authors),
however, relates energy directly to probabilities, and not to the robust statis-
tical M-estimate formulation—the Gibbs energy formulations relates energy to
probability by always assuming a maximum likelihood estimation (MLE), rather
than robust M-estimation. The difference may be subtle, but we believe it is im-
portant. In particular, some of the ad-hoc but basically successful techniques
introduced in deformable object models cannot be justified as model/data un-
certainty, but they can be justified in terms of robust estimation.

The issues of robustness are related to accuracy of prior knowledge, and to
outliers and their impact. For the current uses of deformable modeling, we do
not think “uncertainty” models are sufficiently well understood. We believe that
viewing them as a robust estimation will help. Outliers are data that cannot be
accounted for with the uncertainty model—they lie outside the model. They are
a real problem in non-rigid object modeling and can be caused by many things,
such as edge features or texture inside the organ, other nearby organs, imager
ghosting, etc. Thus the difference between formulation as robust M-estimation
and pure Gibbs-based Bayesian estimation can be profound.

By far one of the most difficult issues in statistical estimation is “noise” that
is not really noise but rather a signal from unmodeled data. For example, in
ventricle modeling, edges from the papillary muscles or other heart chambers
can be locally difficulty to distinguish from the inner heart wall, and have been
shown to cause unwanted attractions and modeling errors. Object shadows are
another example of difficult “noise.” Such under-modeled problems wreak havoc
with most regression techniques since the “noise” may be, from a statistical point
of view, indistinguishable from a true signal. Only domain-specific knowledge,
e.g. a partial model of the unmodeled data, can distinguish the two. By using a
priori knowledge and training data, we believe that we can derive appropriate
reweighting and trimming schemes to provide locally-tuned robust estimators.

Reinterpreting Data Forces: Let us now reinterpret common image forces
by viewing them as robust M-estimates. The decompositions we give are not
unique, but give the flavor of what can be learned by the reinterpretation.

A common long-range force, considered in many papers including [TM91,
OFBGY4], is the scaled distance between nodes and data-points, assuming a
given correspondence. This force is commonly used for “pre-segmented” data,
where the correspondences are computed (usually the nearest point) rather than
being given by a user.

To convert from a force to an energy, we integrate. So if the force function
for a singe point is 3;d, it yields a “quadratic energy” of the form 5~ 3;d* 4+ for
some constant of integration 7. Scaling, boundary conditions and choice of mea-
surement units would determine gamma, but for simplicity let us assume y = 0.
This then defines the p function for the M-estimator. Thus this “force” model
yields an MLE when the distribution between the data and the original node
placements is given by logP = p(u;T) = > 3;d* which, after proper scaling,
results in the conclusion that P is Gaussian! (If 7 # 0, we have a Gaussian-like



distribution with fatter or thiner tails depending on the sign of .) By taking the
M-estimator point of view we see that a “linear” long distance force is a compo-
nent of the MLE that assumes the data displacements are Gaussianly distributed
(once again implying that we want to keep these displacements small.)

5\ ,/ Displacement penalty

Qutlier Process

Fig.2. The penalty (energy) associated with edge displacement grows with distance
from the boundary. However, an outlier process suggests penalties which go to zero
because at greater distances it is likely that the edge is not associated with the model
and is hence an outlier on the “edge-position” certainty function.

The above derivation assumed that the point correspondences were given.
The interpretation begins to get more complex as this assumption is relaxed,
and this 1s often where the robust M-estimate, as opposed to ML estimates,
comes 1n to play. If one looks at the “energy” for simple image forces, the most
common is the sum (integral) of the gradient of a image evaluated on boundary
of the shape. Recall that this measure is the probability of the data given the
shape. Note that almost all deformable papers use the “edge” location, not the
real data. The current techniques do not use edge orientation and use absolute
strength (rather than expected edge strength). The likelihood of the edge given
the surface, however, depends in a complex way on the edge shape (because of
the blurring). The form of these forces, while moderately successful, has been
completely ad hoc, being driven by what 1s convenient to compute. If viewed as
a MLE (i.e. using Gibbs energy), it has some odd implications: That only the
boundary of the model can cause edges—there are no edges inside of an object
and no other (non-modeled) objects; that if two edges are nearby, it is more
likely the model boundary generated the stronger edge; that the orientation of
the edge does not affect its likelihood; and, because of blurring, that an image
with a square outline 1s not a local maximum for a square shape. Note, how-
ever, that the forces in general resemble more traditional robust measures such
as the Tukey bi-weight [Hub81], with a potential function growing locally but
then decaying after the distance between data and model points becomes larger
than some parameter; see figure 3. Their justification is not based on viewing
the energy as probability, but a mixture of local probability measures and use
of the current estimate to “robustly” eliminate outliers. The odd implications
above occur because current models only consider the “edge” position, and be-
cause they mix data uncertainty (e.g. edge position) with uncertainty about the
edge even being associated with the model (i.e. likelihood that the the edge an



outlier). By properly recognizing the two components of the “force” as local es-
timate of certainty, and by robust reweighting, we can permit greater flexibility
in determining the parameters and provide better interpretations to the results.

Original Edge

Edge
Gradient

Clamped to zero Clamped to zero

..........

Qutlier Pure Outlier
Pure Process | sensor Process Pure
Outlier + Model + Outlier
Process Sensor Sensor Process
Model Model

Edge
Force

Clamped to zero Clamped to zero

Fig.3. Current “image” edge forces use the gradient of a smoothed version of the
image. These can be reinterpreted as “short-range” edge forces with robust bi-weight
functions.

Some suggestions this of this view is using expected values for edge strength,
and incorporating edge orientation and sign or edge profile information. In terms
of robustness, we should recognize that in regions with more clutter the local
estimator should be required to have a higher statistical breakdown-point even
if it must sacrifice some statistical efficiency [RL87].

It also suggests a simple idea, currently being explored, wherein one develops
partial models of the regions surrounding the object of interest so that extrane-



ous edges can be anticipated, even if they are not “modeled.” These “partially
modeled” edges will be used in conditioning matches and reweighting, but will
not be “fit” by the modeling process. For example, if an edge is likely to occur
near the edge of interest, e.g. the edge of a shadow is expected, we could ei-
ther use its location to help determine the object edge (if we knew enough and
were willing to compute it), or (more cheaply) we could simply insure that the
“reweighting” function had sufficiently small support to ignore it.

We believe 1t is important to separate the sensor model and uncertainty
modeling from the robust fitting aspects of the problem. Both are important
but they are separate issues. Proper sensor and data uncertainty modeling is
critical to allow meaningful statistical measures to be used—it directly affects the
quality of the fitting results. The robustness is important to making the fitting
process faster and more automated, and hence strongly effects the amount of
effort required on the part of the user, but it only mildly effects the fit quality.
We believe it is important to first understand the desired answer, and only
then worry about approximations to increase the speed. For robust M-estimates
of complex parameterizations, formal proofs of “optimality,” or even proofs of
convergence, are, unfortunately, quite difficult. Thus, while reformulation will
provide a better foundation and better implementations, it will still be based on
algorithms which require experimental verification.

New Data “Force” Models: A particular class of new force measures sug-
gested by the statistical point of view is what we call conditional forces. Recall
that the uncertainty measure we are estimating is P(I | 5), the probability of
the data given the shape. It follows that the “force” between a data point and
a node or element should be conditioned on the likelihood that these actually
correspond. Simple conditioning of the match, e.g. requiring a particular sign of
contrast, is just the beginning. We could/should use the shape and sensor models
to generate “synthetic” data in alocal region and compared this to the measured
data. This would, however, require a very large amount of computation, so sim-
pler approximations, such as using local contrast parameters, edge orientation,
and curvature and intensity profile slope or curvature (edge sharpness), will after
calibration, be used to define data forces.

We also point out that the uncertainty computation in which we are inter-
ested is global, and that simply summing local “forces” is tantamount to assum-
ing the associated sources of uncertainty are independent (when conditioned on
the current shape approximation). This assumption should be relaxed to include
covariance computations of “neighboring” points; the cost/benefit of larger size
neighborhoods will have to be studied. With advances in computing, larger and
more accurate models will be feasible.

An area where 1t is clear that there is dependency in the edge information,
not currently captured in the shape models, are areas of texture. In the area of
medical imaging, in particular for internal organs, the image data is often highly
textured.

An issue that will be of particular importance in these investigations is that



of calibration. To make meaningful interpretations, we will need “models” of
sensor error and prior model uncertainty. In the medical applications, careful
experimentation will be necessary to derive such models. This may be the most
important aspect of this reformulation—it provides an interpretation where the
calibration/learning of model parameters is meaningful. This training will de-
termine the strength of our foundation; if the training data is representative, we
will have justifiable methods!

Reinterpreting Parameter Scheduling:  As mentioned in section 2.1 vari-
ous systems for deformable object models, including include code for “parameter
scheduling.” This code 1s used to insure that in the initial stages of the recovery,
only global parameters are adjusted. When the global parameters have settled,
adjustment of the local parameters begins.

From a robust statistical point of view this scheduling is tantamount to re-
ducing the dimension of the approximate distribution until the “error” is suf-
ficiently small to warrant a better approximation. The lower dimension also
provides more efficient computation. The fixed terms/directions have effective
weights of zero, and are thus ignored. We note that this is a simple form of it-
erative reweighting, and more effective schemes have been studied in the robust
statistics literature [RL87, Hub81, MB93]. In particular, the reweighting should
also depend on the inherent variability of the parameters. In addition, issues
such as selection of the appropriate “order” (dimension) of the model have been
addressed, see [AkaT3, Boz87]. The iterated reweighting schemes should provide
better quality and, hopefully, better speed. Since in the early stages we may also
want to create an artificial gradient which does not really reflect likelihood but
guides us toward the maximum likelihood, we may want to change the form of
the distribution as well as its the weights.

3.4 Related Work

Cootes and Taylor have a simple Gaussian deformable model [CHTH93] which
was put into a conceptually clearer probability framework by Baldwin [Bal94] in
as-yet unpublished work. They label a fixed set of N feature points, defining a
discrete “contour,” in each 2D training image. FEach 2D contour can be thought
of as a single point p in 2/N-space, the parameter space of contours. They find
the mean contour p and the covariance matrix C' for the 2N variables. p and ('
represent the parameters of a Gaussian distribution of training contours in 2/N-
space. C' models the correlations between contour point coordinates. They then
do a principal component decomposition on the distribution of contours, i.e.
they find the eigenvectors of C'. Each eigenvector represents a principal axis in
the distribution of training contours in 2/ N-space. The corresponding eigenvalue
is the variance (spread) of the distribution along this axis. Any N-vertex contour
is a point p in 2N-space that has a Mahalanobis distance (p — p)*C~(p — p),
which can be directly related to the multi-dimensional Gaussian probability.



Cootes and Taylor look at the distributions of pixel values along one dimen-
sion near each of the N 2D points in a contour. They calculate covariance be-
tween pixels near each contour point, but not between those of different contour
points. They then search for the contour that maximizes this grey-level Maha-
lanobis distance alone, P(I | p), while merely bounding the search by imposing
an arbitrary maximum on the positional Mahalanobis distance, P(p). From a
Bayesian point view, ignoring P(p) is inappropriate, but viewing from our per-
spective of robust statistics we note that have little confidence in the prior model
and have replaced it with a “robust version” with a very broad support that is
clamped outside some range.

Baldwin,[Bal94], however, uses P(p) as an internal energy which penalizes
deviation from the correlations gathered during training. He models image en-
ergy, P(I | p), using the covariances of grey values at each contour vertex, at
M different image resolutions. Thus it is another Gaussian, this one in M N-
space. He maximizes the product P(p | I) of these two Gaussians—multiplying
the probabilities is adding the Mahalanobis distances which are his internal and
image energies. The assumption that the distributions are normal may cause the
problems mentioned earlier, but otherwise this system is a simple and instructive
example of the use of the probability formulation. Since the optimization simply
relies on image gradients, it may not be robust to poor initial placement, but
if started close it is robust with respect to extraneous edges. From a “robust”
point of view, the algorithm might benefit by reweighting the various scales
during maximization.

Kervrann and Heitz [KH94], extend Cootes” Gaussian modal representation
of a discrete contour and track moving objects. They model the displacement
from the mean contour as Gaussian, but they also model the difference between
neighboring diplacements as a Gaussian Markov process. This is their prior shape
energy. Their image energy is the number of pixels outside the contour which
have changed by more than a threshold amount since the last frame (or since
some reference frame), minus the same count for pixels inside the contour. Like
Cootes, they estimate global model pose before allowing the model to deform.
Unlike Cootes, they do this by sampling the parameters randomly, using relax-
ation ¢ la simulated annealing. They alternately do the same for perturbations
to the principal deformation components, using their Markov model. This is
a pure probabilistic formulation with no special concession to robust statistics
other than the inital pose computation. The hierarchy of rigid transformation
followed by deformations in a few principal modes, stochastically sampled, pro-
vide robustness and avoid local minima.

The work of Vemuri [VR93, VR94] appears to use a probabilistic framework
for continuous shape models. The models are based on the wavelet decomposi-
tion. The papers discuss the Gibbs formulation and provide rudimentary statis-
tical interpretations of their energy formulations, including the idea of a “mean”
shape. But they do not consider robust techniques, nor do they consider the
statistical interpretation of their “image” forces, nor do they discuss calibration
of data forces which were presumed to be Gaussian. They do, however, use a



simple mean and variance computation to “train” the model’s prior of the global
parameters. Their prior was, unfortuantely, a very poor approximation to their
object.

In [CSDY94], a probabilistic framework is used to integrate the results of a
region classification into a deformable model. Region classification is done using
a Markov random field (MRF). Then contour is deformed based on a combi-
nation of two image energies—the line integral of a smoothed image gradient,
and an area integral of the region inside the contour. This second term penal-
izes the contour for containing pixels classified as belonging outside, and vice
versa. Despite equating these energies with the logs of probabilities P(I, | p)
and P(I; | p), the authors still add them weighted by arbitrary constants. They
say, “... K7 and K3 are the weighting constants which signifies the relative impor-
tance of the two terms in the above equation. Normally, one should choose them
such that the contributions from each of the terms are comparable.” When one
treats the energies this way, they no longer represent probabilities in any quan-
titatively meaningful way. The feature of note here is that they gain robustness
and tolerate poorer initial contour estimates by integrating two kinds of image
information.

Although [NFSK94] does not use a probability formulation, they have a very
clever method for overcoming the problem that image forces are only accurate
very close to the desired object. They specify an initial position and orientation
for their snake only at its endpoints, letting the rest hang where it may, unaf-
fected by image force. Then they gradually turn on the image force starting at
the ends and moving toward the middle. The image force does not attract the
snake to the wrong object, since the force i1s only turned on at each snaxel once
the previous one has settled, presumably close to the desired edge. This is an
elegant example of a way to modify image forces gradually to make them robust
against unrelated edges.

4 Conclusion

While various researchers have related model energy to probability, we believe
that for many vision tasks, the use of “robust statistics,” in particular M-
estimators, 1s more appropriate that straightforward Bayesian analysis. This
statistical framework provides a natural mechanism for “learning” the a prior:
model of objects to be segmented/recovered and provides standard measures of
quality and significance of the recovered models.

Existing work using deformable models has shown them to be quite useful.
However they suffer from various limitations, one of which is the “justification-
by-analogy” of the formulation. By reinterpreting deformable object recovery
from the view of robust statistics, we have found justification for various ex-
isting “ad hoc” but important aspects of deformable modeling techniques. In
addition, this viewpoint suggests numerous enhancements to deformable model-
ing techniques.
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