
Physics in a Fantasy World vs RobustStatistical EstimationTerrance E. Boult1? Samuel D. Fenster2 and Thomas O'Donnell21 tboult@eecs.lehigh.eduEECS Dept., 304 Packard Laboratory, Lehigh University,19 Memorial Drive West, Bethlehem, PA 18015, USA2 [ odonnell j fenster ]@cs.columbia.eduDept. of Computer Science, Columbia Univ., NYC NY 10027, USA.Abstract. Deformable models in the \physically-based" paradigm arealmost always formulated in an ad-hoc fashion, not related to physi-cal reality { they apply the equations on physics in a fantasy world.This paper discusses some of the drawbacks of this approach. Still thesetechniques have shown themselves to be useful, so there must be some-thing here. This paper reinterprets these \physics-based" techniques byputting them into a framework of robust statistics. We use this frame-work to analyze the problems and ad-hoc solutions found in commonphysically-based formulations. These include incorrect prior shape mod-els; bad relative weights of various energies; and the two-stage approachto minimization (adjusting global, then local shape parameters). We ex-amine the statistical implications of common deformable object formu-lations. In our reformulation, the units are meaningful, training dataplays a fundamental role, di�erent kinds of information may be fused,and certainties can be reported for the segmentation results. The robustaspects of the reformulation are necessary to combat interference fromthe necessarily large amount of unmodeled image information.1 IntroductionDeformable models have proven to be a useful tool for �nding shapes in imagedata, for addressing both segmentation and model acquistion. This paper exam-ines two views of the same processes: the �rst is the \physics-based" analogy; thesecond is an interpretation in terms of robust statistical estimation. The physicalanalogy, however, is an analogy to a \fantasy world" where data actually exertsforce on the model and materials have elastic properties unrelated to the actualobject, e.g. one can have a model deforming to describe a bone, despite the factthat the bone is very rigid!While the physical analogy may help some understand the �tting processand be useful for graphics designers, we believe it leads to many problems for? This work supported in part by ARPA Contract DACA-76-92-C-007 and by NSF PYIaward #IRI-90-57951, with industrial support from Siemens, and Texas Instruments



vision/recover systems and may hamper future developments. This paper ex-amines the assumptions that are usually made when formulating a deformablemodel, and the issues that are neglected. An example of the di�culties is deter-mining the proper relative strengths for the various \forces" which is, at best,problematic because their natural units are not forces . What for example, isthe proper conversion from image gradient magnitude to Netwons? What aboutthe conversion for distance from a hand segmented image contours or SPAMMmarkers? The answer, unfortunately, is that the researcher must makes thesetransforms up so that the �tting behavior is acceptable { they invent a fan-tasy world where their algorithms appears to do the right thing. Because thephysical analogy is weak, we have introduced the phrase, \physically-motivatedtechiques" to describe them.We suggest a probabilistic paradigm for formulating and analyzing this re-covery process. The important di�erence between this formulation and previousprobabilistic formulations is that many of the newer \forces" and schedulingtechniques used in the \physics-based" view can be interpreted as using robuststatistical techniques as opposed to traditional Bayesian techniques.It is computational intractable to model a shape's probability directly fromall the pixels in an image and their correlations. It is also quite di�cult toprecisely de�ne a meaningful \optimum" shape and even if one did, �nding theglobally optimum shape is only tractable for trivial cases. Thus, one must treatsome aspects of the image as having unknown, possibly adversarial distributionsproducing image data which will lead to a false segmentations. The techniquesof robust statistics are designed to minimize the damage caused by unmodeleddata. This may involve reweighting our objective function so as to graduallytrade robustness for accuracy as the optimization proceeds.In the next section, we explore the basis of deformable modeling. We thendiscuss the shortcomings of existing practice. We then discuss a probabilisticformulation and show how to interpret known e�ects and existing practices inthis framework, and suggest improved approaches.2 What are Deformable Models?This section provides an overview of deformable models. Those familiar withthem can probably skip it.Deformable (or active) models are curves or surfaces that iteratively deformfrom an initial state until they lie on or near structures in the 2D or 3D imagedata. The process that moves them combines \forces" that are determined fromthe image and from the current shape of the model. In the original formulation[KWT87], an active contour (\snake") is manually placed near a desired bound-ary in a 2D image. It changes shape and position, subject to internal sti�nessforces and to attraction by nearby pixels of high gradient. It iteratively respondsto these forces until it stabilizes at a position which is a compromise betweensitting along the boundary (strongest edges) and maintaining smoothness.



A deformable model can be a discrete chain or mesh of node points connectedby length constraints (spring, tension) and sti�ness constraints (curvature). Thisis a �nite di�erence model (FDM). It can also be a �nite element model (FEM),which is made up of continuous parametric segments or patches, connectedf bycontinuity constraints. In an FDM, forces of image attraction act only on thenodes, whereas in an FEM, they can act on any point, or all points, of an element.The model may also be represented as a continuous parameterized global shape,as a sum of global shapes (modes), or as a global shape with patches representinglocal deviations [TM91].A deformable model is usually formulated as a object with simple physicalproperties which de�ne its potential energy. This energy is composed of variousterms; those which do not depend on the image are divided into internal en-ergies, user energies. and external or image energies. Typical internal energiesare related to node distances, bending and curvature. These usually have theirsquared magnitude summed over the curve or surface. They often simulate thepotential energies of mechanical entities such as springs, sti� rods or thin plates.User forces, e.g. balloon forces [Coh91], push the model outward or toward somepoint. Typical external energies assign strengths to image pixels or edgles, e.g.using intensity or gradient magnitude multiplied or divided by (often squared)distance. The form of the energy terms are often usually selected to make thesolution of a di�erential equation quick or in partially closed form. The energyfunction's negative gradient, a vector in parameter space, is the \force" whichmoves the shape parameters to reduce the energy. In this way, a local energyminimum is sought. We must trust that the initial placement of the model wasclose enough that the local minimumwe found was the \right" one.Di�erential equations are set up to simulate the model's movement. Theseequations sometimes include such physical quantities as mass and viscosity, tostabilize the solution [LL93].2.1 AnalysisIn this section we motivate our approach to deformable models by analysingsome of the problems that exist in current formulations. We believe the primarysource of these problems is the ad-hoc analogy used for recovery. It manifestsitself in many ways, of which we will discuss a few.Inappropriate \Prior" Model Shapes: If there are no data forces, theprocess produces a shape which is its \prior" or rest state. Internal energy termswhich penalize surface curvature may result in model prior states which in noway describe the object under recovery. Smoothing terms which seek to minimizethe total size/bending of the �nite elements composing the surface are extremelycommon in the deformable modeling paradigm [CC90, LL93, KWT87, TM91].Unfortunately, one way to minimize these values is to shrink the element. As aresult, the rest or prior shapes for many of the models are unlikely to resemblethe object of interest. For many snake algorithms, e.g. [KWT87], the rest-shape



is a single point. That is, given no data, the model disappears! And even in thepresence of image data, there is always a force pulling inward, so the model willreach equilibrium somewhere short of the object boundary.In a small subset of deformable model literature, e.g. [LL93, LC94], theinternal sti�ness force is modi�ed to penalize each element based on its di�erencefrom an a priori speci�ed \preferred" element size. By doing so the models willnot disappear in the absence of data, but can be viewed as having an expectedshape of either a straight line with �xed size links (for open snakes) or a circleformed from �xed-size links (for closed).Large Perturbations of Linear FEMs: Almost all of the deformable ob-ject literature in vision and graphics has used FEMs, in particular linear FEMs.These are designed for \small" perturbations from an initial state.3 However, inthe case of weak priors, the model are required to undergo large deformations!The linear FEM provides a �rst order approximation to the sti�ness proper-ties and is generally valid only in a local neighborhood [Bat82]. Inappropriatelyinitializing a model and depending on, for example, balloon forces to push themodel towards the data may result in an extreme distortion of even well cali-brated model sti�ness properties.There has been more recent work on building global object models withFEM model on top of them. In particular, [TM91, PMY94] consider �tting ansuperquadric to an underlying model and then using an FEM surface to accountfor the remaining details. In [PS91], a global model using low order modes isrecovered, and then a spline surface is �t on top to account for remaining de-tails. This does reduce the magnititude of deformations, makine FEM models abetter approximation. In both cases, however, the underlying model is a gener-alized blob that is a very rough approximation. For most objects, the resultingdeformations are still moderatly large in size. In our recent work, [OFBG94], webuild the FEM mesh ontop of a generalized cylinder to allow a more rest statewith more detail. Still the deviations may be too large for a linear FEM.Di�culties Using Residual Data Forces: We de�ne residual forces asthose which tend to zero as the distance between model and data tend to zero.An example of residual forces are segmented data forces (long range forces in[TM91]) which are weighted distance between a model point an a data point.Residual data forces also occur when the image energy is the magnitude of theGaussian-blurred gradient through which the shape passes. The image force goesto zero as an image edge is approached.Under existing deformable model paradigms if the model is endowed withmaterial sti�ness it becomes impossible for it to deform to interpolate the datain the presence of \residual" data forces, even if that data has no noise! In thecase of noisy data, the answer is likely to be biased.3 Exceptions using non-linear FEMs include [TW93] and [HG93].



On careful reading, one might notice that in many of the deformable modelingpapers the reported \sti�ness" parameters are set to very small values,4 which inturns allows the surface to nearly interpolate the data. It also means, however,that in regions of little data the surface is free to wobble and curve with littleinternal constraint.Another way in which researchers have circumvented this problems is by\inventing" new forces such as a \balloon forces," [Coh91]. These forces are notpredicted by the underlying physical analogy as they are neither material forces(sti�ness) nor data (image) forces. Rather they are extra forces which, in an adhoc fashion, force the equilibrium point to be \closer" to the data. (They arealso used to provide an initial force to get the model near the data.)How to determine weights For Data Fusion? The methods in the cur-rent literature for determining the scaling values for data forces and materialproperties are quite ad-hoc, when described at all. In the case of a sti� modelbeing in
uenced by noisy data, how should the the data forces and materialsti�nesses be scaled such that the \best" �t is arrived at? That is, how shouldthe internal and external forces be related? These questions are by and largeignored by papers in the deformable model community. A related question is thefusion of information, how should di�erent types of external forces, be related toone another in the \physically-based" paradigm? Determining the proper rela-tive strengths for fusion of these external forces is, at best, problematic becausetheir very units di�er! Even the units of internal energy (sti�ness) and externalenergy (data forces) don't match. What, for example, is the proper conversionfrom image gradient mangitude to Netwons?In some of our prior work on surface modeling via regularization, the multi-sensor fusion problem was examined using stereo and texture information. Theweighting of information directly determined the success of the integration, see[MB88]. Without a �rm understanding of how the scales sould be determined,fusion is extremely di�cult.\E�ciency" Hacks: Various systems for deformable object models, includ-ing [TM91, OFBG94, OGB94] include code for \parameter scheduling." Thiscode is used to insure that in the initial stages of the recovery, only global pa-rameters are adjusted. When the global parameters have settled, adjustment ofthe local parameters begins. There are two reasons for this parameter scheduling.The �rst is to reduce computation time; the second is to provide robustness|ifthe local parameters are allowed to adjusted too soon they can \latch" onto astrong feature that is not part of the object of interest.While it has advantages, is this method likely to give us the \best" solution?Without some solid foundation for judging the \goodness" of a �t it is impossibleto tell what the e�ciency costs in terms of �tting.4 For example in [TM91] the sti�ness measures are of magnitude 10�6.



Poor Justi�cation for Results: Given the ad-hoc nature of current ap-proaches, justi�cation of results to users such as radiologists becomes an issue.In most physically-motivated applications the sti�ness and data forces are in re-ality selected based what works for some small test set of data. Thus it becomesimpossible to state, for example, that a segmentation performed yield the \best"estimate of the object contour given the data and some prior knowledge of thedomain. If a deformable modeling system is to be used in clinical medicine, hav-ing a justi�able interpretation of the process is not just an academic issue, it isa prerequisite to acceptance.3 A Robust Statistical Approach to Deformable ModelingIn this section a novel view of deformable model recovery is presented. We claimthat the weaknesses of existing methods outlined in the previous section may beovercome by recasting deformable object modeling as a robust statistics problem.In doing so it becomes possible to give meaning to both external and internalforces and thereby create a solid basis from which to interpret recovery results.In addition, results may be reported with con�dence levels indicating the degreeof success. Finally, the training necessary for any recovery system is integratedinto the paradigm at a fundamental level.In the context of robust statistics, more speci�cally M-estimators (see below),deformable modeling becomes a question of relating sensor models, data uncer-tainty, model uncertainty, and the uncertainty in our uncertainty distributionsto arrive at a solution of maximum likelihood.We believe this strategy will provide a solid foundation upon which to ana-lyze existing assumptions and techniques and to propose new methods includingnew \force" formulations and novel \sti�ness properties" rooted not on somepreconceived notions about how the prior models should behave but rather onactual deviations from the expected model gained from training instances.Giving Meaning to Forces and Sti�ness: While there are lots of impres-sive equations supporting the \physically-based" paradigm, data points are notspring forces acting on a spring-like contour or surface. Furthermore, the mate-rial properties of the model may be completely unrelated to those of the objectundergoing recovery { one can have a model deforming to describe a ceramicplate, despite the fact that the ceramic is rigid! Because the physical analogydoes not hold, we prefer to have introduced the phrase, \physically-motivatedtechiques" to describe such approches.As we shall see, the statistical interpretation is also very intuitive. A materialthat is \unlikely" to deviate from its base shape has an uncertainty measure thatis more concentrated around the base shape, similar to a sharp energy peak. Dataof which we are more certain will also have a more concentrated probabilitymeasure, hence larger (but shorter range) forces. If the data is known to beperfect the force would be arbitrarily strong resulting in the interpolation of thedata. Similarly, the con�dence in the correctness of that initial shape, (i.e., its



predilection for maintaining its initial shape) relates to sti�ness of deformablemodels. If the object under recovery is unlikely to have a particular form themodel sti�ness will penalize a deformation towards that form.ReportingCon�dence Levels: In the probabilistic framework it is possibleto report con�dence levels for individual results thereby enhancing their value. Inany experimental science a result lacking an error bound is a nearly useless result.Up to now errors in physically-motivated recovery have been demonstrated butnot well analyzed. Such demonstrations give an indication of how well a similarcase might do. By approaching recovery from a statistical point of view, however,it becomes possible to provide a con�dence level appropriate for each individualexperiment based on the con�dences in the appropriateness of the prior modeland the �delity of the data for that experiment.Such con�dence levels provide several advantages. First, they create a meansfor determining the general predictability of a technique. Second, they lend aquantitative basis for disregarding certain recoveries as unlikely. Finally, theyenable us to justify our results to end users. Doctors, for example, have knowledgeof statistics and will be more likely to understand and embrace results based onstatistics rather than on an imperfect analogy to the physical world.Training can be integrated into both the internal and external force formula-tions at a fundamental level { the forces themselves are probability distributionsto be calculated via training. The relative scaling of these forces becomes a prob-lem of relating probabilities, a basic computation in statistics. And the units ofthese \forces" are no longer at issue since they are probabilities. Finally by in-voking the powerful tools of robust statistics an appropriate prior model may bearrived at.3.1 The Probability FrameworkIn this section we explore the probability formulation of deformable models. Weshall discuss prior work in this area after discussing most of the issues, so thatit can be examined in the light of these issues.The probability we want to maximize with our deformable shape is P(S j I),the probability of S being the \right" shape given that I is the image. Of course,since any single con�guration has in�nitesimal probability, P actually representsa probability density function. We are trying to �nd the following:argmaxS P(S j I) = argmaxS P(S ^ I)P(I) = argmaxS P(I j S)P(S)P(I)When looking for the S that maximizes this, we can ignore the denominator,P(I), because it is constant with respect to S. It is the probability of image Ioccurring, without knowing S. It is useful to decompose P(S ^I) into P(I j S)�P(S) because each of the two factors can be e�ciently approximated. Let usexamine each factor separately.
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at around the shape in question.P(S) is an a priori shape model, a function which measures the inherentlikelihood of the shape regardless of the image. It can penalize unlikely sizes,positions and curvatures. Note that this corresponds to the internal energy|allcomponents of the energy which do not depend on the image.P(I j S) penalizes a shape if the image does not correspond to it. The imageenergy is derived from this. It is often simply and e�ciently modeled as a functionof only those image features that are close to shape S. This is a plausible moveif nearby features (e.g. intensity and gradient at di�erent resolutions) are foundto have roughly the same distribution of strength vs. distance from S regardlessof what S is. However, this assumption, along with what data is being thrownaway, should be examined before this simpli�cation is used.3.2 Mapping Probability to EnergyIn the framework ofmaximum likelihood estimation (MLE), the problem of max-imizing a probability is often converted to the equivalent problem of minimizingits negative log. So, for instance, we may have a set of independent Gaussian ob-servations yi, each of known variance �2, generated from known xi by a functiony(x; a) with unknown parameters a. Finding a that maximizes the joint proba-bility of the observations is equivalent to solving a least squares minimization:argmaxa P(Y1 = y1 ^ Y2 = y2 ^ :::) = argmaxa Yi P(Yi = yi)= argmaxa Yi e� 12 (yi�y(xi;a))2=�2 = argmina Xi 12(yi � y(xi; a))2=�2Thus, minimizing a sum of energies can be equivalent to maximizing a prod-uct of probabilities if E = � ln P. It is useful to have a sum because it simpli�esintegrals and partial derivatives (which give us the force). This same probability-energy equivalence is well-known from the Gibbs distribution used for Markovrandom �elds. It is useful to us as a way of formulating the energy of a deformablemodel, or of analyzing the probabilities implied by an energy formulation.



In all formulations we are aware of, several kinds of energy are added, andthey need some kind of relative weighting. Since the units of the individualterms are unrelated, it is not at all clear what these weights should be! But witha probability-energy equivalence, there is no question of weighting. Once theseparate probabilities are known, adjusting them with weights makes no sense.In other words, the \calibration" of relative energy strengths takes place duringthe estimation of probability distributions (perhaps from training data, perhapsfrom models of the domain and sensor). This framework makes it possible tointelligently integrate di�erent kinds of information, for instance images frommultiple sensors. (It may, however, require a goot bit of work.)The energy minimum achieved is equivalent to a con�dence level in the �nalanswer. Thus, the absolute certainty of the locally minimum-energy shape isknown, and poor segmentations can be rejected.Addressing Sti�ness Problems: Consider a shape S for which P(I j S) isat a local maximum but P(S) is not. If both are positive and di�erentiable thentheir product will not be at a local maximum. Thus, if S is the shape that bestexplains the data, but not the a priori most likely shape, then the segmentationprocess will not choose this shape. How far o� the maximum will be dependson how sloped is P(S) and how sloped is P(I j S) in the neighborhood of themaximum.What does this mean intuitively? That even for a high-likelihood, noiselessimage, the segmentation will err. The problem is that a smooth energy maximumproduces a force that goes to zero. When any other force is added, the total forceat the (former) maximum now points elsewhere. There are two ways to �x this:1) Make P(I j S) have a nondi�erentiable peak when S approaches a suitablystrong image edge. This way, imposing a bias from P(S) does not change thelocation of the maximum; the image force does not approach zero at the edge.2) Make sure P(S) is nearly 
at for any reasonably likely shape S. This makesthe internal force close to zero for such S's.Do we want P(S) to bias the maximum of P(I j S)? We probably do notwant it to bias S's position toward some a priori position|we want to trustthe image edges. But we may want to bias the shape away from bumpiness. Inthis case, P(S) should be 
at over a reasonable range of positions then fall ofquiclky.5 It should not necessarily be 
at with respect to other parameters suchas \excess" curvature.Some formulations de�ne the image energy as linear in the distance to thenearest edge. Such a linear potential satis�es the �rst of the two conditionsabove|it is pointy; its gradient, the force, does not approach zero near an edge.Inverse distance also has this desirable property. But squared distance lacks it.We may get unsatisfactory segmentations if the prior shape model, P(S), isnot good. For example, if (as is usual practice) the function penalizes any kind5 Obviously, if a probability is to have almost no slope over some range of a parameterbut then fall of quickly, it cannot be Gaussian in that parameter. So the shape'sposition in the training images may not be well modelded as Gaussian.



or amount of curvature, the model will be biased away from the object boundaryin even the most exemplary image, unless that object happens to be a circle,sphere, line or plane. If there is an expected shape, the correct thing to penalizeis deviation from that shape.Finding a Gradient to Follow: If we were to accurately model the distri-bution of edge distance from underlying shape in a non-noisy image, we wouldusually �nd that the edges were all within a few pixels of the shape, unless theywere caused by some other object. Thus, the probability of an edge, given ashape, would reach zero (or some constant nonzero noise level) a few pixels awayfrom the shape. It is worth noting that a Gaussian would be a very inappropriatemodel. The optimal shape would need to lie very close to the image edges.But we encounter a problem when we place an initial approximate shape inthe image. Under such a probability distribution, the image force (probabilityor energy gradient) that is to deform the shape will be zero unless the initialapproximation is correct to within a few pixels. Though we would like the shapethat maximizes this probability, the image force will not get us there. A reason-able solution is to blur the image energy, at least initially, so the gradient fromthe strong energy minimum reaches the model. Later on, though, we will wantto be using the correct energy function.Thus, even if our probability model is correct, our minimization process mayneed to use knowledge about the properties of the domain, rather than simplyfollowing a gradient.3.3 Robust StatisticsIn many applications, image edges are not just caused by the object we seek or bysensor noise. There are usually other objects in the scene. Thus, an image energywhich reacts to edges as if they were made by the object we seek becomes more orless accurate depending on the distribution of unrelated edges. To model imageprobability correctly, image energy would have to discriminate between \bad"edges and \good" edges. While we could make some headway by incorporatingexpected color, gradient and other properties, we would still have little hope ofreaching the desired energy minimum by simply following the energy gradient.So instead of attempting to model extrinsic edges, we may treat them aslargely unknown, and try to �gure out how to limit the information that goesinto image energy so that such \adversarial" edges can do minimal damage. Thiswould make the image energy a robust statistic.A robust statistic is an approximation of some other statistic which reducessensitivity to \adversarial" (unmodeled) data. For instance, an average can beperturbed arbitrarily much by a single outlying datum; yet, in the absence ofoutliers, the average, or \central tendency," may be the statistic we seek. Themedian is a measure of central tendency that asymptotically approximates theaverage, but it is more robust|a �xed number of outliers can only change itby a �xed amount, no matter how bad those outliers are. We are interested in



two qualities of a robust statistic: E�ciency which measures how well the robuststatistic approximates the desired statistic. And the breakdown point measureswhat percentage of bad data it takes to degrade the result a certain amount.(The average has a breakdown point of zero.)Robust techniques are generally used to deal with uncertainty in the un-derlying probability distribution or to handle \outliers", data that does not �tthe uncertainty model. Recasting deformable object modeling as a robust M-estimation problem will help us to analyze the existing assumptions and tech-niques, and to propose new ones. Robust estimations are becoming used in vi-sion, with M-estimates and \median" based techniques the most common, e.g.see [MMRK91, MB93].Let us consider the de�nition of an M-estimate as de�ned in P. Huber's classictext ([Hub81, page 43]) on robust statistics:Any estimate Tn, de�ned by an minimum problem of the form:X �(xi;Tn) = min! (1)or by an implicit equationX (xi;Tn) = 0; (2)where � is an arbitrary function,  (x; �) = (@=@�)�(x; �), is called anM-estimate or maximum likelihood type estimate. [Note that for thechoice �(x; �) = � logP(x; �) gives the ordinary ML estimate].In the above de�nition, Tn is the set of n dependent parameters of a model,each xi is an independent parameter (data) and \min!" is a compact way ofexpressing a minimum over all dependent parameters, Tn.6 The interpretationhere is that � is a collection of uncertainties and one seeks to �nd the set ofparameters with minimal cumulative uncertainty. The uncertainty captured in� could be data uncertainty, modeling uncertainty, or even uncertainty aboutuncertainty models used in the computation|the form is quite general. If onereplaces �(x; �) with � logP(x; �) the formulation de�nes maximum likelihoodestimation, hence the name maximum likelihood-type estimator or M-estimatorfor this more general formulation. Note that robust statistics books are quick topoint out that the de�nition in terms of  may only �nd local minima. A classicexample of an M-estimate is when � is the sum of squared distances between datapoints and associated model points. This is least squares modeling, which is themaximum-likelihood estimator for i.i.d. Gaussian noise. Robust M-estimatorsinclude weighted least-squares and trimmed least squares, which are sometimescalled S-estimators).We are not the �rst to note the relationship between deformable models(splines), energy formulations and uncertainties. The relation is over 25 yearsold|see [KW70]. The Gibbs energy formulation de�nes such a relationship andhas been used in many areas including vision, especially in MAP/MRF stud-6 The original de�nition denotes the data uncertainty distribution with the symbol f ,but in this paper we will denote this probability distribution as P.



ies; see [Sze89, ST89, GG91, VR93]. All past work (as known to the authors),however, relates energy directly to probabilities, and not to the robust statis-tical M-estimate formulation|the Gibbs energy formulations relates energy toprobability by always assuming a maximum likelihood estimation (MLE), ratherthan robust M-estimation. The di�erence may be subtle, but we believe it is im-portant. In particular, some of the ad-hoc but basically successful techniquesintroduced in deformable object models cannot be justi�ed as model/data un-certainty, but they can be justi�ed in terms of robust estimation.The issues of robustness are related to accuracy of prior knowledge, and tooutliers and their impact. For the current uses of deformable modeling, we donot think \uncertainty" models are su�ciently well understood. We believe thatviewing them as a robust estimation will help. Outliers are data that cannot beaccounted for with the uncertainty model|they lie outside the model. They area real problem in non-rigid object modeling and can be caused by many things,such as edge features or texture inside the organ, other nearby organs, imagerghosting, etc. Thus the di�erence between formulation as robust M-estimationand pure Gibbs-based Bayesian estimation can be profound.By far one of the most di�cult issues in statistical estimation is \noise" thatis not really noise but rather a signal from unmodeled data. For example, inventricle modeling, edges from the papillary muscles or other heart chamberscan be locally di�culty to distinguish from the inner heart wall, and have beenshown to cause unwanted attractions and modeling errors. Object shadows areanother example of di�cult \noise." Such under-modeled problems wreak havocwith most regression techniques since the \noise" may be, from a statistical pointof view, indistinguishable from a true signal. Only domain-speci�c knowledge,e.g. a partial model of the unmodeled data, can distinguish the two. By using apriori knowledge and training data, we believe that we can derive appropriatereweighting and trimming schemes to provide locally-tuned robust estimators.ReinterpretingData Forces: Let us now reinterpret common image forcesby viewing them as robust M-estimates. The decompositions we give are notunique, but give the 
avor of what can be learned by the reinterpretation.A common long-range force, considered in many papers including [TM91,OFBG94], is the scaled distance between nodes and data-points, assuming agiven correspondence. This force is commonly used for \pre-segmented" data,where the correspondences are computed (usually the nearest point) rather thanbeing given by a user.To convert from a force to an energy, we integrate. So if the force functionfor a singe point is �id, it yields a \quadratic energy" of the formP �id2+
 forsome constant of integration 
. Scaling, boundary conditions and choice of mea-surement units would determine gamma, but for simplicity let us assume 
 = 0.This then de�nes the � function for the M-estimator. Thus this \force" modelyields an MLE when the distribution between the data and the original nodeplacements is given by logP = �(u;T ) = P �id2 which, after proper scaling,results in the conclusion that P is Gaussian! (If 
 6= 0, we have a Gaussian-like



distribution with fatter or thiner tails depending on the sign of 
.) By taking theM-estimator point of view we see that a \linear" long distance force is a compo-nent of the MLE that assumes the data displacements are Gaussianly distributed(once again implying that we want to keep these displacements small.)
Outlier Process

Displacement penaltyFig. 2. The penalty (energy) associated with edge displacement grows with distancefrom the boundary. However, an outlier process suggests penalties which go to zerobecause at greater distances it is likely that the edge is not associated with the modeland is hence an outlier on the \edge-position" certainty function.The above derivation assumed that the point correspondences were given.The interpretation begins to get more complex as this assumption is relaxed,and this is often where the robust M-estimate, as opposed to ML estimates,comes in to play. If one looks at the \energy" for simple image forces, the mostcommon is the sum (integral) of the gradient of a image evaluated on boundaryof the shape. Recall that this measure is the probability of the data given theshape. Note that almost all deformable papers use the \edge" location, not thereal data. The current techniques do not use edge orientation and use absolutestrength (rather than expected edge strength). The likelihood of the edge giventhe surface, however, depends in a complex way on the edge shape (because ofthe blurring). The form of these forces, while moderately successful, has beencompletely ad hoc, being driven by what is convenient to compute. If viewed asa MLE (i.e. using Gibbs energy), it has some odd implications: That only theboundary of the model can cause edges|there are no edges inside of an objectand no other (non-modeled) objects; that if two edges are nearby, it is morelikely the model boundary generated the stronger edge; that the orientation ofthe edge does not a�ect its likelihood; and, because of blurring, that an imagewith a square outline is not a local maximum for a square shape. Note, how-ever, that the forces in general resemble more traditional robust measures suchas the Tukey bi-weight [Hub81], with a potential function growing locally butthen decaying after the distance between data and model points becomes largerthan some parameter; see �gure 3. Their justi�cation is not based on viewingthe energy as probability, but a mixture of local probability measures and useof the current estimate to \robustly" eliminate outliers. The odd implicationsabove occur because current models only consider the \edge" position, and be-cause they mix data uncertainty (e.g. edge position) with uncertainty about theedge even being associated with the model (i.e. likelihood that the the edge an



outlier). By properly recognizing the two components of the \force" as local es-timate of certainty, and by robust reweighting, we can permit greater 
exibilityin determining the parameters and provide better interpretations to the results.
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Fig. 3. Current \image" edge forces use the gradient of a smoothed version of theimage. These can be reinterpreted as \short-range" edge forces with robust bi-weightfunctions.Some suggestions this of this view is using expected values for edge strength,and incorporating edge orientation and sign or edge pro�le information. In termsof robustness, we should recognize that in regions with more clutter the localestimator should be required to have a higher statistical breakdown-point evenif it must sacri�ce some statistical e�ciency [RL87].It also suggests a simple idea, currently being explored, wherein one developspartial models of the regions surrounding the object of interest so that extrane-



ous edges can be anticipated, even if they are not \modeled." These \partiallymodeled" edges will be used in conditioning matches and reweighting, but willnot be \�t" by the modeling process. For example, if an edge is likely to occurnear the edge of interest, e.g. the edge of a shadow is expected, we could ei-ther use its location to help determine the object edge (if we knew enough andwere willing to compute it), or (more cheaply) we could simply insure that the\reweighting" function had su�ciently small support to ignore it.We believe it is important to separate the sensor model and uncertaintymodeling from the robust �tting aspects of the problem. Both are importantbut they are separate issues. Proper sensor and data uncertainty modeling iscritical to allowmeaningful statistical measures to be used|it directly a�ects thequality of the �tting results. The robustness is important to making the �ttingprocess faster and more automated, and hence strongly e�ects the amount ofe�ort required on the part of the user, but it only mildly e�ects the �t quality.We believe it is important to �rst understand the desired answer, and onlythen worry about approximations to increase the speed. For robust M-estimatesof complex parameterizations, formal proofs of \optimality," or even proofs ofconvergence, are, unfortunately, quite di�cult. Thus, while reformulation willprovide a better foundation and better implementations, it will still be based onalgorithms which require experimental veri�cation.New Data \Force" Models: A particular class of new force measures sug-gested by the statistical point of view is what we call conditional forces. Recallthat the uncertainty measure we are estimating is P(I j S), the probability ofthe data given the shape. It follows that the \force" between a data point anda node or element should be conditioned on the likelihood that these actuallycorrespond. Simple conditioning of the match, e.g. requiring a particular sign ofcontrast, is just the beginning. We could/should use the shape and sensor modelsto generate \synthetic" data in a local region and compared this to the measureddata. This would, however, require a very large amount of computation, so sim-pler approximations, such as using local contrast parameters, edge orientation,and curvature and intensity pro�le slope or curvature (edge sharpness), will aftercalibration, be used to de�ne data forces.We also point out that the uncertainty computation in which we are inter-ested is global, and that simply summing local \forces" is tantamount to assum-ing the associated sources of uncertainty are independent (when conditioned onthe current shape approximation). This assumption should be relaxed to includecovariance computations of \neighboring" points; the cost/bene�t of larger sizeneighborhoods will have to be studied. With advances in computing, larger andmore accurate models will be feasible.An area where it is clear that there is dependency in the edge information,not currently captured in the shape models, are areas of texture. In the area ofmedical imaging, in particular for internal organs, the image data is often highlytextured.An issue that will be of particular importance in these investigations is that



of calibration. To make meaningful interpretations, we will need \models" ofsensor error and prior model uncertainty. In the medical applications, carefulexperimentation will be necessary to derive such models. This may be the mostimportant aspect of this reformulation|it provides an interpretation where thecalibration/learning of model parameters is meaningful. This training will de-termine the strength of our foundation; if the training data is representative, wewill have justi�able methods!ReinterpretingParameter Scheduling: As mentioned in section 2.1 vari-ous systems for deformable object models, including include code for \parameterscheduling." This code is used to insure that in the initial stages of the recovery,only global parameters are adjusted. When the global parameters have settled,adjustment of the local parameters begins.From a robust statistical point of view this scheduling is tantamount to re-ducing the dimension of the approximate distribution until the \error" is suf-�ciently small to warrant a better approximation. The lower dimension alsoprovides more e�cient computation. The �xed terms/directions have e�ectiveweights of zero, and are thus ignored. We note that this is a simple form of it-erative reweighting, and more e�ective schemes have been studied in the robuststatistics literature [RL87, Hub81, MB93]. In particular, the reweighting shouldalso depend on the inherent variability of the parameters. In addition, issuessuch as selection of the appropriate \order" (dimension) of the model have beenaddressed, see [Aka73, Boz87]. The iterated reweighting schemes should providebetter quality and, hopefully, better speed. Since in the early stages we may alsowant to create an arti�cial gradient which does not really re
ect likelihood butguides us toward the maximum likelihood, we may want to change the form ofthe distribution as well as its the weights.3.4 Related WorkCootes and Taylor have a simple Gaussian deformable model [CHTH93] whichwas put into a conceptually clearer probability framework by Baldwin [Bal94] inas-yet unpublished work. They label a �xed set of N feature points, de�ning adiscrete \contour," in each 2D training image. Each 2D contour can be thoughtof as a single point p in 2N -space, the parameter space of contours. They �ndthe mean contour �p and the covariance matrix C for the 2N variables. �p and Crepresent the parameters of a Gaussian distribution of training contours in 2N -space. C models the correlations between contour point coordinates. They thendo a principal component decomposition on the distribution of contours, i.e.they �nd the eigenvectors of C. Each eigenvector represents a principal axis inthe distribution of training contours in 2N -space. The corresponding eigenvalueis the variance (spread) of the distribution along this axis. Any N -vertex contouris a point p in 2N -space that has a Mahalanobis distance (p � �p)TC�1(p � �p),which can be directly related to the multi-dimensional Gaussian probability.



Cootes and Taylor look at the distributions of pixel values along one dimen-sion near each of the N 2D points in a contour. They calculate covariance be-tween pixels near each contour point, but not between those of di�erent contourpoints. They then search for the contour that maximizes this grey-level Maha-lanobis distance alone, P(I j p), while merely bounding the search by imposingan arbitrary maximum on the positional Mahalanobis distance, P(p). From aBayesian point view, ignoring P(p) is inappropriate, but viewing from our per-spective of robust statistics we note that have little con�dence in the prior modeland have replaced it with a \robust version" with a very broad support that isclamped outside some range.Baldwin,[Bal94], however, uses P(p) as an internal energy which penalizesdeviation from the correlations gathered during training. He models image en-ergy, P(I j p), using the covariances of grey values at each contour vertex, atM di�erent image resolutions. Thus it is another Gaussian, this one in MN -space. He maximizes the product P(p j I) of these two Gaussians|multiplyingthe probabilities is adding the Mahalanobis distances which are his internal andimage energies. The assumption that the distributions are normal may cause theproblems mentioned earlier, but otherwise this system is a simple and instructiveexample of the use of the probability formulation. Since the optimization simplyrelies on image gradients, it may not be robust to poor initial placement, butif started close it is robust with respect to extraneous edges. From a \robust"point of view, the algorithm might bene�t by reweighting the various scalesduring maximization.Kervrann and Heitz [KH94], extend Cootes' Gaussian modal representationof a discrete contour and track moving objects. They model the displacementfrom the mean contour as Gaussian, but they also model the di�erence betweenneighboring diplacements as a Gaussian Markov process. This is their prior shapeenergy. Their image energy is the number of pixels outside the contour whichhave changed by more than a threshold amount since the last frame (or sincesome reference frame), minus the same count for pixels inside the contour. LikeCootes, they estimate global model pose before allowing the model to deform.Unlike Cootes, they do this by sampling the parameters randomly, using relax-ation �a la simulated annealing. They alternately do the same for perturbationsto the principal deformation components, using their Markov model. This isa pure probabilistic formulation with no special concession to robust statisticsother than the inital pose computation. The hierarchy of rigid transformationfollowed by deformations in a few principal modes, stochastically sampled, pro-vide robustness and avoid local minima.The work of Vemuri [VR93, VR94] appears to use a probabilistic frameworkfor continuous shape models. The models are based on the wavelet decomposi-tion. The papers discuss the Gibbs formulation and provide rudimentary statis-tical interpretations of their energy formulations, including the idea of a \mean"shape. But they do not consider robust techniques, nor do they consider thestatistical interpretation of their \image" forces, nor do they discuss calibrationof data forces which were presumed to be Gaussian. They do, however, use a



simple mean and variance computation to \train" the model's prior of the globalparameters. Their prior was, unfortuantely, a very poor approximation to theirobject.In [CSD94], a probabilistic framework is used to integrate the results of aregion classi�cation into a deformable model. Region classi�cation is done usinga Markov random �eld (MRF). Then contour is deformed based on a combi-nation of two image energies|the line integral of a smoothed image gradient,and an area integral of the region inside the contour. This second term penal-izes the contour for containing pixels classi�ed as belonging outside, and viceversa. Despite equating these energies with the logs of probabilities P(Ig j p)and P(Is j p), the authors still add them weighted by arbitrary constants. Theysay, \...K1 and K2 are the weighting constants which signi�es the relative impor-tance of the two terms in the above equation. Normally, one should choose themsuch that the contributions from each of the terms are comparable." When onetreats the energies this way, they no longer represent probabilities in any quan-titatively meaningful way. The feature of note here is that they gain robustnessand tolerate poorer initial contour estimates by integrating two kinds of imageinformation.Although [NFSK94] does not use a probability formulation, they have a veryclever method for overcoming the problem that image forces are only accuratevery close to the desired object. They specify an initial position and orientationfor their snake only at its endpoints, letting the rest hang where it may, unaf-fected by image force. Then they gradually turn on the image force starting atthe ends and moving toward the middle. The image force does not attract thesnake to the wrong object, since the force is only turned on at each snaxel oncethe previous one has settled, presumably close to the desired edge. This is anelegant example of a way to modify image forces gradually to make them robustagainst unrelated edges.4 ConclusionWhile various researchers have related model energy to probability, we believethat for many vision tasks, the use of \robust statistics," in particular M-estimators, is more appropriate that straightforward Bayesian analysis. Thisstatistical framework provides a natural mechanism for \learning" the a priorimodel of objects to be segmented/recovered and provides standard measures ofquality and signi�cance of the recovered models.Existing work using deformable models has shown them to be quite useful.However they su�er from various limitations, one of which is the \justi�cation-by-analogy" of the formulation. By reinterpreting deformable object recoveryfrom the view of robust statistics, we have found justi�cation for various ex-isting \ad hoc" but important aspects of deformable modeling techniques. Inaddition, this viewpoint suggests numerous enhancements to deformable model-ing techniques.
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