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Abstract

This paper explores a form of robust distance
measures for biometrics and presents experiments
showing that, when applied per “class” they can
dramatically improve the accuracy of face recognition.
We “robustify” many distance measures included in the
CSU face-recognition toolkit, and apply them to PCA,
LDA and EBGM. The resulting performance puts each
of these algorithms, for the FERET datasets tested, on
par with commercial face recognition results.

Unlike passwords, biometric signatures cannot be
changed or revoked. This paper shows how the robust
distance measures introduce can be use for secure
robust revocable biometrics. The technique produces
what we call Biotopes™ which provide public-key
cryptographic security, supports matching in encoded
form, cannot be linked across different databases and
are revocable. Biotopes support a robust distance
measure computed on the encoded form that is proven to
not decrease, and that may potentially increase,
accuracy. The approach is demonstrated to improve
performance beyond the already impressive gains from
the robust distance measure.

1.0 Introduction and background

The paper has two major contributions, one on the
use of robust distance measures for face-recognition, and
the second on the issues of privacy. The two results are
deeply interrelated, because as we attempted to solve the
privacy issues, we realized the need for, and advantages
of, a windowed robust operator in computing distance.
This led us to the design, implementation and evaluation
of robust measures for face recognition. The privacy
issues are significant in their own right, though some
may consider them outside of the scope of “vision”. We
contend, however, our community must address the
many facets of our research, including societal impact.
We briefly introduce some of the privacy issues before
presenting, in section 2, the proposed approach. Section
3 presents more discussion of the application of robust
distance measure in face recognition and then section 4
presents the experimental results.

A compromised biometric cannot be “replaced” and
that permanent loss feeds the perception of invasion
from any use of biometrics — if decades later the
government or a corporation plays Big Brother, you
cannot take back the information they gathered or lost.

On the security side, however, biometrics provide a
unique way of verifying an individual and have very
important uses.  Proper biometric use can actually
enhance privacy, by ensuring a verified identity before
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releasing data. A critical issue in the biometric area is the
development of a technology that allies the privacy
concerns while supporting the security goals.

This paper introduces the concept of biometric-based
tokens that support unique identification, that support
robust “similarity” or distance computations, that
provide cryptographic security such that it can be
canceled or revoked and replaced with a new one. This
approach provides privacy while not compromising
security. The critical idea is a technique that both
provides a Public-Key-invertible mapping that hides the
user’s identity while simultaneously supporting a robust
distance metric that allows the detailed matching needed
to separate intra-subject variations from inter-subject
variations and to support a range of different False
Match Rate (FMR) vs. False NonMatch Rate (FNMR).

A few approaches for privacy preserving biometrics
have been discussed in the literature, the most notable
being [Ratha-et-al-01], wherein the biometric undergoes
predefined distortion on the raw data (e.g. image) during
both enrollment and verification. Such transforms can
degrade the systems ability to detect the features needed
for identification and can have a significant impact on
the measure between the probe and gallery image. No
accuracy impact on their approach has been presented.
Some have presented “hashing” as a privacy protection,
e.g. [Tulyakov-et-al —04], but to date those techniques
almost doubled the error rates. In addition, the space of
potential effective biometric consistent hashes appear to
be small, resulting is limited privacy protection. Other
related “privacy” work are the many papers/patents that
improve privacy by mixing a user specific “random”
pattern or phase mask that is mixed with or used to
project the data, [Soutar-et-al-98, Savvides-et-al-04,
Gao-Ngo-03]. These approaches, and others, apply a
user-specific key to transform the data. [Goa-Ngo-03]
does report the performance impact of their privacy
improving techniques, but as their goal is “cryptographic
key-storage”, not recognition, it is not directly
comparable. Furthermore, they only test on frames from
a video stream that are very similar, not on any standard
database. [Savvides-et-al-04] reports performance over
illumination but the subset of the PIE data [Sim-et-al-01]
used has no variation in pose/expression. In both papers
it appears as a verification context, where the individual
users key is used to generate their mask. It is unclear
what the performance, or privacy protection, would be if
the user key was known. In addition, [Soutar-et-al-98
and Savvides-et-al-04] provide correlation-like output
that are all susceptible to hill-climbing attack, [Adler-
05], to recover the original data. The strong



“windowing” of the approach proposed herein makes
hill-climbing very difficult, as the distance landscape is
constant except in a very small neighborhood of the true
subject.

2.0 Secure robust biometric transforms

We will introduce the new approach; review the
concept of robust distance measures and robust distance
calculation. We will then briefly discuss issues of
enrollment, transform storage, how to extend the
approach to N dimensional data and issues for finite bit
data. We then discuss a few variations on the encoding.

Our approach uses feature space transforms based on
the representation of the biometric signature, i.e. after all
transforms are computed. Most importantly the
transform induces a robust distance/similarity metric for
use in verification. In a sense, it is an “add-on” after all
the other processing. The approach supports both
transforms that are public-key cryptographically
invertible, given the proper private key or using
cryptographic one-way functions such as MD5  which
trade less risk of comprise for more effort in
reenrollment or transformation if data is compromised.
In either case, even if both transformation parameters
and transformed data are compromised, there is no way
to get back the original data, thus removing the risk of
reconstruction if centralized Databases are compromised.
Finally, the approach can support an integrated multi-
factor verification wherein the stored data cannot be used
for identification (or search), even using the “guess each
person and verify” approach. Existing multi-factor
approaches store the biometric and other factors
separately, verify each and only provide access if all are
successful. Our approach stores a fused data and neither
the biometric nor the added factors are directly stored in
the DB. Thus allowing a face biometric for
“verification” that the government cannot use for
surveillance/search!

2.1 Robust distance computation

For the sake of simplicity in understanding, we
initially explain the approach presuming all fields are 64
bit floating-point numbers. We illustrate the idea with a
simple biometric signature with one field and we assume
for simplicity of explanation that the “distance” measure
is simply the distance from the probe to the gallery data
(i.e. items in the DB) and that the “verification” is then
based on threshold of the absolute distance.

A key insight into the approach is that a robust
distance measure is, by definition, not strongly impacted
by outliers [Huber-81]. In a robust measure, the penalty
for an outlier is generally constant. Figure 1 shows the
penalty function for a 1D least squares error and for 1D
robust M-estimator. In many of the traditional distance
measures, e.g. L2, weighted L2 or Mahalanobis
measures, the multi-dimensions penalty for a mismatch
grows as a function of distance, thus if the data in one
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Figure 1: The penalty in the “similarity function”. For
weighted least squares errors, the penalty is a
constant time distance, and grows quadratically. Thus
a single outlier significantly impacts the fitting. For a
robust similarity metric, the penalty is limited to
maximum value e.g. outliers have a constant, and
limited, impact on the overall measure. Given
measurements p,q, we can define a robust measure
mp(p,q) = ¢ if abs(r(p) -r(q)) > b, and mp(p,q) = (r(p) -
r(q))? otherwise.

sub-dimension is far off then the penalty is high. Most
fingerprint systems use a robust distance measure, yet
most open-source face systems have only limited forms
of them. (Most commercial face systems do not detail
their similarity measures.) There are many other uses of
the term “robust” in vision; here we stick to distance
measures. Robust distance measures have been used in a
range of vision problems many of which are parameter
estimation (e.g. pose, stereo, motion), with nice range
covered in special issue with introduction by [Meer-et-
al-00] and a good review by [Stewart-99]. The approach
herein is quite different from “Robust PCA”, such as
[Huber-et-al-05]. We do not modify the PCA computation,
only the distance measure use for “classification” in the
PCA/LDA or other algorithm subspaces.

There are many types of robust distance. In the
remainder we consider only windowed operators, where
the penalty outside a finite window is constant (or 0).
Before we look at privacy preserving, we explain how
this type of distance measure can enhance a recognition
algorithm. Consider the hypothetical clusters show in
Figure 2, with the axes showing the first two PCA
coefficients. Recall Mahalanobis space is “defined” as a
space where the sample variance along each dimension
is one, which is the case in Figure 2. It is important to
note that the overall data co-variances are quite different
from the per-cluster co-variances. The text labels
correspond to the ideal clusters of a collection of sample
instances. “Ideal” elliptical boundaries are shown for
each cluster. The background circle with wavy lines
represents a constant distance from the center of the “1”
cluster. Using simple distance, the tilted text shows the
incorrect associations from clusters 2 and 3 with the “1’
cluster, as well as the incorrect associations of two 1’s
with the 2 and 3 clusters.

To consider the robust-distance measure’s impact, let
dashed lines represent the diameter of each dimension of
a “robust window”, implicitly rescaling distances so that
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Figure 2: Cluster association using traditional and
robust distance measures. See text for discussion.

this is a unit length in each dimension. This window
size is the maximum extent of the non-outliers (i.e.
excluding text in boxes) for any cluster. In this example,
clustering using the robust distance measure provides a
perfect separation of the clusters. We note that even the
hypothetical “outliers” (text in shaded boxes), properly
associate using this robust distance operator. Outliers are
especially problematic for projection-based approaches,
as a small alignment error can cause significant error in
projections with high-frequency patterns in the
subspaces coefficients.

Note this example considered a single “robust
window” size for all data, a process we call
GroupRobust. Further clustering improvements can be
realized, if we have sufficient training data, by using a
separate robust window per cluster. In either case, this
robustification is a highly nonlinear process and requires
appropriate training. The size of the robust-window
should be the expected size of intraclass variations,
ignoring outliers. Of course, we cannot presume such
powerful a priori knowledge, so an important aspect of
the approach is how well experimental data allows us to
estimate the needed window sizes.

We now return to the issue of privacy. We assume
the biometric produces a value v which we then
transform via scaling and translation, v'=(v-t)*s. The
resulting data is separated into two parts, one
representing overall position and the other local detail or
residual. Without loss of generality, we can represent
this with residual r = the fractional part of v', and general
wrapping number g = the integer part of v'. The
approach will then use a one-way transform or
encryption of g to hide the user’s identity. The thick
shaded line on the axis of Figure 1 shows an example
“residual region” after appropriate transforms. After the
transform, all data will be “wrapped” or aliased to some

position r within this region. The number of times the
data is wrapped is the value g. This describes the key
concepts of the approach. A mapping hides the actual
value but as it separates the result into two, it leaves an
unencrypted value within a “window” in which we can
compute local distance, and then encrypts the larger (and
hence very stable) part of the position information thus
effectively hiding the original position and protecting
privacy. This key idea was inspired from the modulus
computation in RSA-type Public Key (PK) algorithms.

An alternative enhancement includes a user password
before encoding. The transform and wrapping is
computed and the passcode is then fused with the
generalized wrapping index, g before encoding. The
inclusion of the passcode provides a strong form of
revocation, and protection from its use in search or
identification rather than recognition.

To ensure that the biometric data is protected even if
the “transformation” parameters are compromised, we
need to ensure that the mapping from g to w is non-
invertible or at least cryptographically secure. The
“security” of the revocable approach is determined by
this transform. The preferred approach is to use a PK
encryption of g to produce w. For simplicity we refer to
the transformation v to (r,w) as encoding and r,w as
encoded data. If a password is mixed with g before
encoding, the result is a revocable biometric that is
suitable for verification but which prevents recognition
or search as the user pin is not stored anywhere.

2.2 Robust distance computation on the encoded data

Assume for signatures p,q, encoding using s,t yielding
r(p), 1(q), w(p), w(q), we define the robust dissimilarity
metric d(p,q) as follows:

d(p,q) = cif w(p) != w(q) || abs(r(p) -r(q)) >=b

d(p,q) = (x(p)/s(p) -1(q)/s(q))” otherwise
This distance computation is just one example of a

robust distance measure, one that uses a constant penalty
outside a fixed window and least squares penalty within
the window. The unique property of the mapping
ensures that the window around the correct data is
mapped to a window in which any robust distance
measure can be computed.

Clearly given r,s,t and g, the original data can be
reconstructed. It should also be obvious that many
distinct data points will all have the same value for r, and
that without knowledge of g, the original cannot be
recovered. The biometric store would maintain r,s,t and
w (the encrypted version of g). We can consider each of
these as user specific functions that can be applied to an
input signature, e.g., 1, (v) is the residual associated with

biometric signature v when using the kth user’s
transform, and w, (v) is key w that results from v after

applying the transform and the encryption associated
with user k.



A key issue is the choice of the scale and translation.
If we let € be the jth biometric signature for user k,

then if s, and t, are chosen such that
bs, < rk(ekJ) <(l-bs) Vj (Eq 1)

for each field in the signature. Since we are free to
choose s and t separately for each user and each field and
can do so after we have obtained the enrollment data, it
is straightforward to satisfy Equation 1 for all enrollment
data. For this to be truly effective, the range of values
used to determine the scale in Equation 1 should larger
than the actual variations of that parameter for that user,
not just over the enrollment data. In practice, we have
increased the enrollment range by a factor of 3 to ensure
that the actual user’s data is very unlikely to fall outside
the scaled window. Even with the described constraints
there are still “infinitely” many choices for t for “real”
numbers, and a huge range for floating points. Changing
t impacts both r and g and combined with the encryption
for w, provides protection of the underlying identity.
For finite bit representations, the constraints are more
limiting, as is discussed later, but for some values of b it
can be satisfied for any field with more than a single bit.

Theorem 1:

If a transform satisfies Equation 1, and the distance
measure is has a constant penalty outside the window
that is at least as large as any penalty within the window,
then computing distances in the encoded space cannot
decrease, but may increase, the accuracy of the system.

Proof: Given Equation 1, it is easy to see that d(p, ¢,) =
mg (p,e,), ie. for the matching users the robust

dissimilarity measure applied to the transformed data is
the same as the original robust metric applied to the raw
data with a robust window of size (s* b).

For an imposter, ¢;, encoded with user k’s transform
two possibilities exist. Ifbs, < rk(ei,j) <(l-bsy) Vj, for
every field within the signature then w(p) == w(q) and
the distances for the imposter i, will be the same before
and after transform. Otherwise, scaling/shifting has
resulted in at least one field distance being equal to c,
even though the field was initially close enough that the
pre-encoded distance was < c. Since c is chosen such
that it is greater or equal to the maximum distance within
the robust window, then for non-matching i != k, the
transform may increase, but cannot decrease, the
distance. Q.E.D.

Thus we have shown the distance transform computed
in encoded space cannot decrease accuracy, and may
often improve accuracy by increasing the distance to
non-matching subjects. Note the proof requires the
scaling/translations satisfy Equation 1, which need not
be the case, especially if are outliers. Note that some
“robust distance” operators have zero impact (penalty)

sufficiently far from the data, which means they do not
satisfy the preconditions of the theorem.

For a real biometric with N dimensions, we treat each
dimension separately, so given a raw biometric vector V
with n elements, we compute V'=(V-T)*Diag(S), where
each of T and S are now vectors of size N and Diag(S) is
an N by N diagonal matrix generated from S. We
separate the result of the transformation, this time into
the residual vectors R, and general wrapping G. Again
G is transformed to the encrypted W, and the biometric
store retains T, S, R and W.  If the system designer
usually uses a Mahalanobis transform before distance
computation, the covariance transform should be applied
to V before it is subject to translation and scaling. Note
this simplifies the process since after the covariance
transform, the data is mean-zero and scaled so that the
variance in each direction is equal. With such a
transform it may be possible to choose a single scale
parameter S rather than an independent scale for each
field, thus reducing the extra storage requirements.

3.0 Robust distances for face-based biometrics

While the secure robust revocable biometric
transform applies to almost any biometric template, we
evaluate its performance on face-based systems. To
demonstrate the generality of the improvements to be
obtained by using robust distance measures in face-based
systems, we extended algorithms included in the
Colorado State University (CSU) Face Identification
Evaluation System (Version 5.0) [Bolme-etal-03]. In
particular we developed robust versions of the “baseline”
PCA-based face recognition system using multiple
metrics, their LDA-based face recognition algorithms
and the Elastic Bunch Graph Matcher (EBGM)[Okada-
et-al-98]. Unless noted otherwise, we use the defaults,
e.g. 300 coefficients for PCA and 427 for LDA

By design, the proposed approach maintains the
robust distance measure after encoding. Thus the first
step needed was to develop a face-based recognition
system that used a robust distance measure. A robust
distance measure is one where the penalty for outliers is
bounded, with many different robust measures used in
practice [Huber-81].

Robust distance measures have been used in various
other computer vision problems; we were surprised to
find no formal application in face recognition. The most
“robust” distance measure we have seen in face
recognition is the Mahalanobis Cosine” (hereafter
MahCos) used in CSU. This is robust in a formal sense
since the impact of an outlier is bounded, because the
cosine computation itself has a maximum value of 1.
We note that the MahCos was the best performing
distance measure in the CSU tests. As will be seen in
section 4, the secure revocable transform applied to
MahCos, did produce a measurable performance
improvement, but for unknown reasons, its overall



performance well below the other robust
approaches.

While there are many different robust measures, we
consider only simple windowed or trimmed measures
introduced earlier. Let ® be a window operator such that
o(p)= P if B <t, and ® =C otherwise, where 7 is the
window size. For the PCA algorithm, we implemented
robust versions of "Euclidean" or L2 metric, as well as
the robust Mahalanobis L2 measure (hereafter MahL2)
and the CSU MahCos. We also extended CSU’s LDA
implementation to use a robust distance measure. For
brevity, we describe only MahL2.

Mabhalanobis space is “defined” as a space with unit
sample variance along each dimension. The
Mahalanobis Transform thus divides each coefficient in
the vector by its corresponding standard deviation. Letu
and v represent the unscaled PCA coefficient vector of
images of user j and k respectively. Let o; be the
standard deviation across all users in the i" dimension,
then the Mahalanobis transforms of u and v are given as
m= u/ c; and n= v/ c; nj. Let B; = (mi-ni)z, and let sy
be the enrollment scaling from Equation 1 for user k, we
define RobustMahL2 distance as

Dpy (4, k) = Z(D(Si,kﬁi) 2

Obviously because of the scaling this is not generally
symmetric, i.e. Drm(j,k) = Drm(k,j).

In any windowed robust measure, the choice of the
window size is very important. In our case, to ensure
the revocable transform has the same distance before and
after encoding, we desire the enrollment process to
determine a scale such that Equation 1 is satisfied.

While per individual scaling produces a better robust
measure for that individual, it can be problematic in that
it presumes a wide range of images per individual for
enrollment. We postulated that for each field, a single
scaling could be used for the entire population. This
simplifies enrollment, allowing for single image
enrollment, but does slightly reduce the effectiveness of
the robust distance transform. We call this the
GroupRobust transform. This approach has worked well
for both PCA and LDA with different robust measures.

The EBGM was extended to also support robust
distance measures. The CSU system had a plethora of
distance measures applied in EBGM matching which we
extended. We report only two CSU considered the best.

was

4.0 Evaluation using face-based biometrics

This section summarizes our experimental valuation
of the secure robust revocable biometric transformation
(SRRBT) and shows the significant advantages of using
a robust distance measure for face recognition. As noted
earlier, previous work on transformed biometrics did not
provide quantitative evaluation of the recognition
performance so we cannot compare to such transforms.
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Figure 3: CMC curve for various algorithms on DUP_1

A robust revocable transform is first determined in
section 2 for each individual and entered in the DB. For
verification, the SRRBT of the claimed identity is
applied to the probe data and then compared, using the
robust distance measure, with the stored data. We treat
identification/recognition as a sequence of verification
attempts, apply person k’s transform and then compute
the distance to person k’s revocable template.

In keeping with the CSU toolkit model, the
experiment applied the robust revocable biometric to a
gallery of all the FERET data to generate all pair-wise
comparisons, and then subsets of that data were analyzed
for different "experiments". The standard FERET
experiments were done including FAFB, FAFC, DUPI,
and DUP2 [Phillips-et-al-00]. The Secured Robust
Revocable Biometric consistently outperformed the CSU
baseline algorithms as well as all algorithms in the
FERET study and all commercial algorithms with
published results on FERET.

A CMC graph for some of the tested algorithms is
shown in figure 3. This example CMC graph is similar to
those for the other datasets. Hereafter we report only
rank-1 data to save space. Table 1 shows the Rank 1
recognition rates computed for the standard FERET
subsets for the algorithms in the CSU toolkit (gold), the
best previously reported [NIST-01] from FERET tests
(red) and a range of revocable robust techniques, with a
total of over 250 million biometric comparisons. The
dramatic improvement in recognition performance
shows the significance of using a robust metric. To
quantify the impact of the embedding separate from the
robust distance measure, the tables include a “simple
robust” which is the robust PCA algorithm without any
embedding. An obvious issue for the GroupRobust
techniques is the definition of the group used for
training. We have tested with different groups, all 3541
images, DUPI (243 subjects, 722 total images), FAFC
images (2 each of 194), and the 2 images each of 71
individuals (X2) used to train the FERET PCA space
(feret_training x2.srt from CSU’s toolkit), as well as
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Figure 4: Verification ROC plots for FERET_ALL.

other subsets not shown. Note that FAFC has no
subjects/images in common with any of DUP1, DUP2 or
X2. Also note that differences of 1-2 individual
recognitions (e.g. 100 versus 99.48 for FAFC) may be
caused by the random “offsets” used to define the
revocable transforms and should not be considered
significant.

Verification rates are best computed over large sets,
so in addition to the individual sets reported in the
FERET study, we computed results for the full
FERET ALL, which has 3541 tests for positive
identification and over 11 million attempts for false
identification. The ROC in Figure 4 is in log-log format
because the new algorithms perform so well that a linear
ROC plot is useless. The graph truncates to le-5. Note
for the revocable algorithms, the vertical axis of the
ROC curves is generally truncated by the sample set size
causing a radical jump to the right axis when the data is
exhausted. The Equal Error Rate (EER) of the Revocable
Robust algorithms that use individual scaling is
generally better than prior algorithms by a factor of at
least 10, often by 100. The Revocable Group Robust
algorithm has a better equal error rate than all previously
reported algorithms.

We also did experiments to show the revocable
transforms do not allow matching/linking across
databases or cannot be used without their associated
passcode. The first self-matching test took 191 subjects
in FAFC, and made 25 copies of each image, with the
resulting rank one recognition being 0.0055 or about the
1 in 200 expected from random matching. We also
processed the FERET ALL set (3541 images) and after
enrollment gave each image of a person a different
transform. The resulting rank one recognition was zero
on 3 out of 5 rounds and 0.0002 on the remaining 2 runs.
For verification, the ERR for both tests was consistently
0.9997. Thus, as expected, different transforms for an
individual match at random and hence protect privacy.
It is important to point out, that in verification, the tests

Algorithm DUP1 | DUP2 | FAFB | FAFC
# subjects 243 75 1195 194
# Matched scores 479 159 1195 194
# Non-matched 228 K 25K | 1427K 37K
FERET “BEST” 59.1 52.1 86.2 82.1
Simple Robust PCA 85.73 | 85.47 98.32 100.0
Revocable Robust
PCA 90.72 | 87.18 99.50 | 100.0
Revocable (all)
GroupRobust PCA 86.57 | 85.47 98.32 100.0
Revocable (DUP1)
GroupRobust PCA 85.46 | 85.47 98.24 | 100.0
Revocable (X2)
GroupRobust PCA 83.80 | 83.76 97.99 | 99.48
Revocable (FAFC)
GroupRobust PCA 81.85 | 82.05 97.15 | 99.48
Revocable Robust
PCA MahL2 90.72 | 87.18 99.50 | 100.0
Revocable Robust
PCA MahCosine 68.14 | 67.52 93.97 | 96.39
Revocable Robust
LDA 90.72 | 87.18 99.50 | 100.0
Revocable (all)
GroupRobust LDA 88.78 | 85.47 98.91 100.0
Revocable (X2)
GroupRobust LDA 87.95 | 84.62 98.83 100.0
Revocable (FAFC)
GroupRobust LDA 81.85 | 81.20 98.24 | 99.48
Revocable Robust
EBGM Predictive 91.27 | 88.03 100.0 | 100.0
Revocable Robust
EBGM Search 91.27 | 88.03 100.0 | 100.0
Table 1: Rank 1 Recognition Rates on FERET subsets

all provide the “imposter” with the correct “key” for
generation. If the correct keys are only provided to the
true match, the verification rate is driven by the random
change of two keys colliding times the verification error
rates presented above.

5.0 Conclusions

The paper introduced the use of a windowed robust
distance measure for face biometrics and showed how
these measures significantly improve the performance of
three well-known face-based biometric algorithms.
Multiple different robust measures were tested per
algorithm and all significantly improved performance.
The “trimmed” robust measures used are different from



most used in previous vision because their penalty (loss)
functions do not go to zero but to a large constant, and
because of how the roust window sizes are estimated.
However, if the training data is representative, their
influence function does go to zero and the breakdown
point is the ideal 0.5. The robust measures introduced
require minimal added computational cost. = The
performance enhancements from the use of our robust
transform were dramatic. The resulting Revocable
Robust PCA, using multiple images for enrollment,
produced performance on par with the commercial
algorithms. The “group robust” versions, which permit
use with only a single enrollment image, were slightly
weaker but still better than most known algorithms and
were good enough to produce 100% recognition on
FERET FAFC when the group parameters are obtained
from FERET DUPI (a non-overlapping set of people).
The excellent performance of the group robust algorithm
based on PCA combined with the simplified enrollment
processes and fast computation, combine to suggest this
algorithm has considerable potential.

The new approach estimates consistent class “cluster
sizes” and showed that even using different people for
training, defining a robust windowed distance can
provide significantly improved performance. A
hypothetical explanation is that within an individual’s
“cluster”, the variations represent non-linear interactions
with unmodeled variable (such as pose, lighting and
expressions). The subspaces for recognition consider the
overall spread of people and unmodeled variables; The
robust window distance separates out the latter. The
GroupRobust results suggest the ranges of variations are
relatively consistent across a population. We note
“robustness” herein is quite different than that
traditionally considered, e.g. as use in ROBPCA [Huber-
et-al-05]. However, a combination of the two different
approaches could be very interesting.

This paper introduced the revocable robust biometric
transform and showed its effectiveness on face-based
biometrics. The transforms are applied to biometric
template data to produce two components one of which
is encrypted while the other is stored unsecured. The
transforms combined with encryption maintain the
privacy while the unencrypted part supports a robust
distance measure, something that is critical to make
biometrics effective. The paper proves that this privacy
preserving transform will not decrease, and may
increase, system accuracy. While the paper presents
only face, the approach applies to almost all biometrics
and we have also implemented a fingerprint-based
version. The fingerprint version is more complex
because of the alignment issue, but still showed an
average 30% improved accuracy.

Biometrics have the promise to improve security.
But as Admiral James Loy, then Head of Transportation
Security Agency, stated at the 9th Annual Privacy &
American Business Conference, 2003 "Don't be too

quick to strike a balance between privacy and security.
As Americans, we are entitled to a full measure of both".
Secure Robust Revocable Biometrics show, that at least
for biometrics, we don’t have to accept the loss of
privacy to gain security.  Not only do they provide
privacy, they actually improve the accuracy of the
underlying biometrics, which improves both privacy and
security!
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